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Zusammenfassung

Zusammenfassung

Körperteilerkennung und die Detektion der menschlichen Pose sind wichtige Aspek-

te in der Robotik und der Mensch-Roboter Interaktion. Von besonderem Interesse

ist die Detektion der Handpose. Da die Hand die Hauptverbindung zwischen Robo-

ter und Mensch in Zusammenarbeitsszenarien darstellt, ist sie Gegenstand aktueller

Forschung.

In dieser Arbeit präsentieren wir eine Methode um die Orientierung der Hand aus

einzelnen Tiefenbildern in Echtzeit zu schätzen. Unser Ansatz ist so entwickelt, dass

er mit existierenden Hand- bzw. Körperteildetektoren kombiniert werden kann, wel-

che eine erste Schätzung der Handposition liefern. Unsere zweiteilige Architektur

verfeinert zuerst die Schätzung des externen Handdetektors und berechnet darauf-

hin die Orientierung. Beide Ebenen unserer Methode benutzen auf anotierten Da-

tensätzen echter Hände trainierte Convolutional Neural Networks.

Wir entwickelten zwei verschiedene Arten um die Orientierung zu berechnen, wo-

bei eine Methode Punkte auf der Hand benutzt um die Pose zu beschreiben und die

andere die 3D Rotation mithilfe von Quaternionen darstellt. Wir vergleichen beide

Methoden und arbeiten Vorteile und Nachteile heraus.

Auf einem Testdatensatz führen wir eine Reihe von Experimenten durch und evalu-

ieren die Leistung unseres Ansatzes. Die Ergebnisse zeigen, dass die Methode eine

hohe Genauigkeit erreicht, selbst wenn die Distanz zwischen der Hand und dem

Tiefensensor in der Nähe der maximalen Messweite liegt. Sie funktioniert in Echt-

zeit auf gewöhnlicher Hardware und kann mit einem beliebigen Körperteildetektor

kombiniert werden.
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Abstract

Abstract

Body part detection and human pose estimation are important aspects of robotics

and human-robot interaction. Hand pose estimation is particularly interesting and

part of current research since the hand is the main link between humans and robots

in collaboration scenarios.

In this thesis we propose a method to estimate a hand’s orientation from single depth

images in real-time. Our approach is designed to be combined with existing hand /

body part trackers which give an initial guess for the hand position. The two-stage

architecture of our method first refines the initial guess and subsequently estimates

the orientation. Both stages use convolutional neural networks trained on realistic

labeled hand datasets.

We developed two different methods to estimate the orientation, one using three

keypoints on the hand to represent the pose and the other one using quaternions

which describe a 3D rotation. We compare both methods and determine advantages

and disadvantages.

Using an independent test dataset we conduct a series of experiments and evaluate

the performance of our approach. The results show that the method estimates the

orientation with high precision, even if the distance between hand and depth sensor

is near the maximum range. It runs in real-time on ordinary hardware and can be

combined with any body part detector / tracker.
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1
Introduction

In human-robot interaction scenarios perception of human body parts such as hands

is an important component in a robot’s repertoire of skills. Especially an exact esti-

mate of the pose of a human hand is required in various tasks, such as learning from

demonstration and visual tasks, human robot collaboration (e.g. passing objects

from robot to human or vice versa) or gesture recognition. Actions and movements

of humans, that seem intuitive, are not easy to be reproduced by a robot. In a sce-

nario of grasping an arbitrary object, not only the grasp, i.e. where the object is

touched, but also the trajectory of the hand towards the object and its orientation

during the whole process has to be determined to allow a humanoid robot to learn

from a human instructor and imitate his/her movements.

Tracking and detecting human body parts has been widely studied in the computer

vision community, but most methods provide only a rough estimate of the hand’s

position. Most human body tracking methods require the full body to be visible in

order to perform well and don’t provide a guess for the hand pose. Other approaches

directly focus on hands, but they are mostly designed to work in close range of an

RGB-D sensor (such as the Microsoft Kinect) and work well when the hand is placed

right in front of the camera [25, 26]. Hand pose estimation is very challenging due

to the high variability in hand appearance, many degrees of freedom of the hand

and self-occlusions [16].

In this work we present a method to get a good real-time estimate of the hand ori-

entation which also works in a wide-range scenario with arbitrary camera positions

and perspectives and can thus be applied to ordinary tasks, such as moving the hand

towards an item. Due to the existence of good body part trackers the focus of this

work lies on the pose estimation and therefore our method is meant to be combined

with arbitrary body trackers. More precisely it uses the tracker’s estimated hand
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position as an initial guess and feeds it into a two stage architecture, which con-

sists of two convolutional neural networks trained with deep learning algorithms.

Further, we recorded two datasets of both near-range and far-range depth images

with annotated keypoints for training the networks after applying data augmenta-

tion techniques, to enlarge the datasets.

The objective of the first stage is to give a very precise estimate of the hand’s center

point since the initial guess is usually not precise enough. Knowing the exact hand

position is of great importance for the second stage because we have experienced

that performance of the orientation estimation drops if the region of interest (ROI)

that covers the full hand is not well defined.

We developed two different methods to estimate the hand’s orientation which differ

in the way they represent the pose. The first one predicts three keypoints of the

hand (namely wrist, index and pinkie) from which the orientation can be computed

subsequently. The other one uses quaternions to directly represent the orientation.

We evaluate the performance of both methods and compare the advantages and dis-

advantages.

Our approach is designed to be used with Microsoft Kinect or Asus Xtion sensors,

which are both RGB-D cameras, although our method only uses depth images. In

contrast to RGB images, they are invariant to changes of illumination (if not ex-

posed to direct sunlight which affects the infrared depth sensor) and the detection

is therefore more robust. The exact details of the theory behind this method and the

implementation will be provided in the following chapters.
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2
Related Work

In this chapter we want to give an overview about current body part detection/track-

ing methods and compare them. There exist a great variety of approaches which all

have advantages and disadvantages. These methods can be divided into two groups:

generative methods and discriminative methods.

Generative learning is also called model-based learning because a model of the body

or body part, e.g. the hand, is fitted to an image. Assumptions about the pose are

made based on which model configuration matches the image best. Commonly gen-

erative approaches have a high accuracy, but require a lot of computation and hence

are mostly non real-time. Additionally, some generative methods like [21] need

a good prior state estimate and therefore rely on initialization from a certain pose.

Model-based locality assumptions can cause problems because especially hands tend

to move fast and have a lot of degrees of freedom, e.g. it can lead to error propa-

gation in subsequent frames. Despite that, generative methods are widely used in

tracking and detection.

On the other hand, discriminative approaches learn the direct mapping from input

images to the target space, such as joint labels or joint coordinates [26]. These

methods do not use a visual model, but a labeled training dataset to train a pose

estimator. Datasets can be either synthetic or real. While synthetic datasets are usu-

ally easier to obtain and less noise-corrupted, real datasets are more accurate and

inherently have the correct joint angle constraints whereas most artificial models

are capable of anatomically incorrect poses (e.g. wrong joint angles) [27]. Unfor-

tunately it is very time-consuming to label a real dataset. Discriminative learning

methods strongly depend on the the quality of the training dataset. In comparison

with generative approaches they are commonly more robust and computationally

efficient, but also less accurate.
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2.2 Hand Pose Estimation

2.1 Human Pose Estimation

Shotton et al. [24] from Microsoft Research developed a state-of-the-art discrimina-

tive approach for human pose recognition that is designed to work with Microsoft
Kinect RGB-D cameras. Their method only requires single depth images for body

part segmentation. They created a large, synthetic and highly diversified depth im-

age database of human poses and trained a deep randomized decision forest (a

machine learning algorithm). Major emphasis was placed on fast runtime as their

approach should be able to be used in real-time on consumer hardware. It is able to

detected poses of arbitrary body rotation and works even for multiple people.

Another discriminative human pose estimator was proposed by Tompson et al. [27].

It uses a hybrid architecture of a deep convolutional network and a markov random

field in order to use a higher level spatial model to correct poses that are anatom-

ically incorrect and constrain joint interconnectivity and thus overcoming a major

problem of discriminative methods. Their technique requires only RGB images and

runs at almost real-time frame rates.

Sapp et al. [23] developed a more traditional generative method for pose estima-

tion with RGB images using deformable part models. They proposed a multimodal

model approach with a cascaded mode selection and focused mainly on the trade-off

between speed and accuracy.

2.2 Hand Pose Estimation

Hand pose estimation is a similar problem to 3D full body pose estimation. For

both the key challenge is to recognize the configuration of an articulated object with

a high degree of freedom. However, self-occlusions, object-occlusions, viewpoint

changes, high variety in poses and noise caused by lower image resolution presents

an additional challenge for hand pose estimation.

Tompson et al. [26] presented a real-time hand pose recovery method for single

depth images. They used an artificial hand model and applied a random decision

forest for image segmentation to create a labeled real hand dataset which was used

to train a deep network. Their approach can be extended for arbitrary articulated

objects, it only requires a 3D model of the object. The focus lies on hands in close-

range and the method can handle self-occlusions but no object occlusions.

Tang et al. [25] published another discriminative method for real-time articulated

hand pose estimation with depth images. They created a small, partially labeled real
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2 Related Work

hand dataset and a big synthetic dataset of more than 300.000 images on which they

trained a special semi-supervised learning algorithm called transductive regression

forest. This approach is interesting because it shows a way to resolve the gen-

eral problem of discriminative methods, which are the high costs for labeling real

datasets. Their work is designed to work on single images, so no prior information

is needed. Like [26] it cannot deal with occlusions through objects and is designed

for the close-range domain. We evaluated their synthetic dataset because we con-

sidered using it for our training, but found it not suitable for our purposes due to

missing hand poses (e.g. dorsal view).

Another discriminative approach was developed by Romera et al. [22] focusing on

handling object context and interaction. It is able to deal with all kinds of occlu-

sions and partially corrupted data and runs in real-time using only RGB images.

Pose ambiguities are solved through temporal consistency. The tracking method is

non-parametric and uses histogram of orientated gradients (HOG) as feature repre-

sentation to perform a nearest neighbor search in a database of hand poses. How-

ever, the hand-background segmentation method is susceptible to errors since it is

only based on skin color.

Very Recently, Oberweger et al. [20] improved over state-of-the-art approaches test-

ing several deep network architectures on existing artificial hand datasets such as

[25]. They applied a joint-specific refinement stage to improve the joint localization

using a different network for each joint.

A model-based articulated hand pose estimation method is presented by Kuznetsova

et al [16]. Their method uses single RGB-D images and does not rely on prior in-

formation. The model is fitted to the data using a non-rigid iterative closest point

(ICP) algorithm. Like other generative approaches, it is not fast enough to be run in

real-time on normal hardware and is not able to deal with object occlusions.

Unlike most other hand pose estimation techniques our method focuses only on esti-

mating the hand’s 3D orientation rather than the articulated hand pose. It works in

real-time using single depth images, aims to be applied both in close and far range

scenarios and does not need a pose initialization. Like most other approaches, our

method can only resolve self-occlusions.
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3
Background

3.1 Introduction

Originally, efforts to develop artificial intelligence (AI) focused primarily on prob-

lems that defied human solution but were easily handled by computers. Typically,

these problems required massive computational capacity, and since they adhered to

a machine’s formal rules, they were also able to exploit the machine’s inherent ad-

vantages over a human’s computational ability.

The difficulties began when AI was applied to solve tasks that are easy or even in-

tuitive for people to do, but cannot be easily described by a set of rules or a formal

language. The most basic everyday tasks like recognizing speech or faces turned out

to be very hard to be learned by a machine because they require a lot of knowledge

about the world. People acquire this knowledge automatically in the course of their

life, but fail to teach it explicitly to a computer. In the advent of AI, several projects

tried to create databases with statements and inference rules, also known as the

knowledge based approach. But none of these inference engines was very successful

as they failed to comprehend easy matters, because it is extremely difficult to find a

precise formal description of the complex real-life relations and situations.

Machine learning is a different approach in AI. For example if the task is to design

an algorithm for face recognition, knowledge based approaches would try to define

hard-coded rules what a face should look like. In contrast, a machine learning ap-

proach would use a set of example images of faces and images, that do not show

faces, to learn what a face is. After the period of learning (training) it is able to

discriminate a face from a non-face.

There are different kinds of machine learning algorithms. First of all, we distinguish

between supervised and unsupervised algorithms. In supervised learning, the train-

ing data are labeled, like in the previous example of face detection. In unsupervised
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3.2 Basics

learning, examples are not labeled. The algorithm tries to find common patterns

in big data and clusters them into groups [12]. In this thesis, we will focus on

supervised learning methods. There are also different subcategories of supervised

learning, mainly classification and regression problems. A classification is a map-

ping of inputs x to a discrete number of output classes y. For example, suppose we

have images as input, a classification algorithm could group the content of the im-

ages into learned categories like cars or faces. In regression, by contrast, the output

variable is continuous, e.g. it could be used to predict housing prices from the living

area [17].

Success or failure of machine learning strongly depends on the representation of

data. The different pieces of information that form the representation are called

features. Machine learning algorithms learn how to combine these features to ob-

tain a certain result. For some problems it is easy to find the right set of features,

but for some tasks it is not intuitive what features should be extracted. For example,

if we want to find a feature suitable for detecting cars, we could use the wheels.

However, it is very hard to describe what a wheel looks like in pixels, because of the

image’s perspective, lighting, occlusion, etc.

Deep learning is a way to deal with this problem. High level representations of fea-

tures are described by a combination of lower level representations. Easy features

like edges are combined to corners and contours which finally can represent the con-

cept of an image. As this hierarchy can include various stages and is thereby a deep
hierarchy, the method is called deep learning. We used deep learning with artificial
neural networks for our hand pose estimator and will therefore explain it in detail in

this chapter [12].

3.2 Basics

Before we have a look at more advanced machine learning techniques, we will cover

basic machine learning principles that help to understand the more sophisticated

algorithms of deep learning.

3.2.1 Linear Regression

Linear regression is a simple machine learning model for supervised learning and

more precise - as the name already implies - regression problems. The relation of

input x and output y is approximated by a linear function [12]. We define the linear
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3 Background

function as a hypothesis h

h(x) = wᵀx, (3.1)

with input vector x and a vector of parameters w, called weights. It can be also

expressed in a non-vectorized form

h(x) =

n∑
i=0

wixi, (3.2)

with n being the number of features.

Let’s have a look at an easy example. Suppose we want to predict housing prices

with the size of the living area, given a dataset of m examples of houses with their

area x and price y, as shown in Table 3.1. Linear regression tries to find an optimal

living area (m2) price (1000e)

185 120
120 410
80 280

202 610
63 250

115 432
. .
. .
. .

Table 3.1: Housing prices

assignment for weights w, so as to find a linear function h which approximates the

dataset best (Figure 3.1).

We define a cost function

J(w) =
1

2

m∑
i=1

(h(x(i))− y(i))2, (3.3)

which measures the distance between prediction h(x) and training output y. In

order to learn the weights w, the algorithm considers the training examples and

tries to minimize J(w), i.e. make h(x) close to y [18]. To minimize J(w), we can

solve for where its gradient is 0. However, to solve the function analytically one has

to compute

w = (xᵀx)−1xᵀy, (3.4)
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3.2 Basics

Figure 3.1: Housing prices: The dataset of houses (blue points) is approximated by
a linear regression function (red).

which can result to be very inefficient in time, especially for datasets with a lot of

features. That’s why in practice, an approximative method called gradient descent is

used to minimize J(w).

3.2.2 Gradient Descent

Gradient descent is a search algorithm which starts with an initial guess for w and

tries to minimize J(w). The update step for each wj of w, (j = 0, ..., n) looks as

follows

wj := wj − α
∂

∂wj
J(w), (3.5)

with α being called the learning rate, a parameter that controls the speed of conver-

gence. Intuitively, this algorithm moves in the direction of the steepest descent of

J(w) until convergence or failure (if the learning rate is too big). In general, gradi-

ent descent just finds local minima, but in case of linear regression, the cost function

J is convex quadratic and the algorithm thus always finds the global minimum as

there is no other minimum. To apply the algorithm, we have to solve the partial

derivative of J(w) with respect to every wj . To make it easier, we will first consider
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having only one training example:

∂

∂wj
J(w) =

∂

∂wj

1

2
(h(x)− y)2 (3.6)

= 2 · 1
2
(h(x)− y) · ∂

∂wj
(h(x)− y) (3.7)

= (h(x)− y) · ∂

∂wj
(

n∑
i=0

wixi − y) (3.8)

= (h(x)− y)xj . (3.9)

If we insert this in Equation 3.5, we get the following update rule:

wj := wj + α(y(i) − h(x(i)))x(i)j . (3.10)

For more than one training example there are two modifications of the algorithm:

Batch gradient descent (BGD) and stochastic gradient descent (SGD). BGD always

considers every training example before it updates the weights. The algorithm looks

as follows:

Repeat until convergence {

wj := wj + α
m∑
i=1

(y(i) − h(x(i)))x(i)j (for every j). (3.11)

}
In contrast, SGD updates the weights for every training example:

Loop {
for i=1 to m, {

wj := wj + α(y(i) − h(x(i)))x(i)j (for every j). (3.12)

}
}

SGD does not have to scan the whole dataset before moving towards the minimum

and thereby often gets good results faster than batch gradient descent, although it

may never fully converge [18].
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3.3 Deep Learning

3.3 Deep Learning

Machine learning models like linear regression or logistic regression and other sim-

ple machine learning algorithms, that we did not consider in this work, use a fixed

set of features to train a predictor. However, there are problems, such as visual

recognition tasks, where it is difficult and very time-consuming to manually craft

features. How would you design features for let’s say a face detector? You would

have to find a way to encode which pixel values correspond to eyes, nose or other

parts of the face in order the detect it.

By contrast, deep learning solves this problem by learning new features and au-

tonomously creating a new feature space. Originally, research on deep learning was

inspired by new findings in neuroscience. E.g. it is believed that the visual cor-

tex first extracts edges, then surfaces, then objects, etc. [17]. Deep learning also

uses this kind of layered architecture, with different stages that learn increasingly

complex features, and thus being able to represent arbitrarily complex non-linear

transformations [12]. The name artificial neural networks which is often used in-

stead of deep learning also symbolizes the connection to the brain and the objective

of replicating its functionality.

Deep Learning first became popular in the 80s and 90s, but then disappeared from

the scene until the resurgence in recent years. The development of faster computers,

especially graphics processing units, was crucial since deep networks, i.e. networks

with many layers, have enormous hardware requirements and could not realize the

same functions as today with hardware from the 80s. Now deep learning is the state

of the art in machine learning and its algorithms have outperformed other machine

learning techniques in various competitions.

3.3.1 Neural Networks

To understand how neural networks work we will first have a look at a simple model,

a network with only one neuron as illustrated in Figure 3.2. This neuron takes 3

inputs x1, x2, x3 and a +1 bias term and computes the output

hW,b(x) = f(W ᵀx) = f(

3∑
i=1

Wixi + b), (3.13)

where W denotes the vector of weights, b denotes the bias term and f is the activa-

tion function. While the weights change the steepness of the activation function, the
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3 Background

x1

x2

x3

+1

hW,b(x)

Figure 3.2: Model of a single neuron with 3 inputs x1, x2, x3, a +1 bias term and 1
output.

bias allows to shift it to the left or right. There are several possible activation func-

tions such as the sigmoid function, the hyperbolic tangent function or the rectifier

function. Although our approach uses Rectified Linear Units (ReLU), i.e. a unit that

uses the rectifier function, we will explain neural networks by means of the sigmoid

function

f(z) =
1

1 + exp(−z)
. (3.14)

Figure 3.3 shows a plot of the sigmoid function.

−6 −4 −2 0 2 4 6

0

0.2

0.4

0.6

0.8

1

z

si
gm

oi
d(
z
)

Figure 3.3: The sigmoid function maps the inputs to the range [0,1].

A neural network is the connection of many neurons (or units, as they are also re-

ferred to). We will use the simple network shown in Figure 3.4 for explanation. The

units are grouped into different layers, the left layer (L1) is called input layer, the

right one (L3) output layer and the middle layer (L2) hidden layer. Accordingly our
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3.3 Deep Learning

x1

x2

x3

+1 +1

hW,b(x)

a
(2)
1

a
(2)
2

a
(2)
3

L2L1 L3

Figure 3.4: Neural network model with 3 layers.

model has 3 input units (without counting the +1 bias unit), 3 hidden units and 1

output unit. Of course a neural network can have multiple hidden layers or output

units, but for the sake of simplicity we explain a model with only one hidden layer

and one output unit. It is an example of a feedforward neural network because its

graph is acyclic [19]. As all units from neighboring layers are connected, the layers

are also called fully-connected layers.

3.3.2 Forward Propagation

Let’s have a look at how a network computes the output on the basis of the former

example. First of all it is necessary to define some denotations. A layer l has a matrix

of weights W (l), where W (l)
ij denotes the weight of the connections between unit j

in layer l and unit i in layer l + 1. The bias of unit i in layer l + 1 is written as b(l)i .

The output of unit i in layer l is called activation a(l)i , accordingly the input xi = a
(1)
i .

The final output of the network, hypothesis h(x)W,b is computed as follows:

a
(2)
1 = f(W

(1)
11 x1 +W

(1)
12 x2 +W

(1)
13 x3 + b

(1)
1 ) (3.15)

a
(2)
2 = f(W

(1)
21 x1 +W

(1)
22 x2 +W

(1)
23 x3 + b

(1)
2 ) (3.16)

a
(2)
3 = f(W

(1)
31 x1 +W

(1)
32 x2 +W

(1)
33 x3 + b

(1)
3 ) (3.17)

hW,b(x) = a
(3)
1 = f(W

(2)
11 a1 +W

(2)
12 a2 +W

(2)
13 a3 + b

(2)
1 ). (3.18)
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It is possible to introduce another variable z(l)i which signifies the weighted sum of

inputs to unit i in layer l, so that a(l)i = f(z
(l)
i ). Now the equations above can be

expressed in a vectorized fashion:

z(2) =W (1)x+ b(1) (3.19)

a(2) = f(z(2)) (3.20)

z(3) =W (2)a(2) + b(2) (3.21)

hW,b(x) = a(3) = f(z(3)) (3.22)

Generically this can be rewritten as

z(l+1) =W (l)a(l) + b(l) (3.23)

a(l+1) = f(z(l+1)) (3.24)

This step is called forward propagation [19].

3.3.3 Backpropagation

Assuming we have m training examples we denote the labeled training set as

{(x(1), y(1)), ..., (x(m), y(m))}. Analogous to linear regression, we can define a cost

function J that measures the nets accuracy by comparing the hypothesis hW,b(x),

after having performing a forward propagation, with the ground truth y (i.e. the

correct value associated with x). Considering only a single training example one

possible way to define the cost function is:

J(W, b;x, y) =
1

2
‖hW,b(x)− y‖2. (3.25)

Then the cost function for a whole set with m training examples is defined in the

following way:

J(W, b) =

[
1

m

m∑
i=1

J(W, b;x(i), y(i))

]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2 (3.26)

=

[
1

m

m∑
i=1

(
1

2
‖hW,b(x

(i))− y(i)‖2)
]
+
λ

2

nl−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )

2, (3.27)

where nl denotes the number of layers and sl denotes the number of units in layer

l (without the bias). The second term is called weight decay, it is a regularization
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3.3 Deep Learning

method applied to prevent weights from adopting big values by penalizing large

weights. Thus the weights converge to smaller absolute values which helps to pre-

vent overfitting. Overfitting means that the function the network computes specif-

ically fits the training set, but does not provide a general solution for the problem.

Hence test results are bad even though the training results were good.

In the previous section, we explained how gradient descent is used to minimize the

cost function of linear regression. Now the same can be done for neural networks,

where the goal is to minimize J(W, b).

First, all weights and biases are initialized randomly with small values and the out-

put of the network is computed with the forward propagation algorithm for every

example of the batch. Now gradient descent can be used to update the parameters:

W
(l)
ij =W

(l)
ij − α

∂

∂W
(l)
ij

J(W, b) (3.28)

b
(l)
i = b

(l)
i − α

∂

∂b
(l)
i

J(W, b). (3.29)

The partial derivatives of the cost function for the whole training set is composed of

the sum of the partial derivatives with respect to a single training example and the

derivative of the weight decay term:

∂

∂W
(l)
ij

J(W, b) =

[
1

m

m∑
i=1

∂

∂W
(l)
ij

J(W, b;x(i), y(i))

]
+ λW

(l)
ij (3.30)

∂

∂b
(l)
i

J(W, b) =
1

m

m∑
i=1

∂

∂b
(l)
i

J(W, b;x(i), y(i)). (3.31)

There is an efficient way to compute the partial derivatives called backpropagation.

It first computes the error δ(nl)
i at the outputs and then propagates the error term

δ
(l)
i backwards into the network to compute how much every unit was responsible

for the output error:

1. Compute the outputs performing a feedforward pass given a training example

(x, y)

2. Compute output error

δ
(nl)
i =

∂

∂z
(nl)
i

1

2
‖y − hW,b(x)‖2 = −(yi − a

(nl)
i ) · f ′(z(nl)

i ) (3.32)
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3. For l = nl − 1, nl − 2, nl − 3, ..., 2

For each node i in layer l, set

δ
(l)
i = (

sl+1∑
j=1

W
(l)
ji δ

(l+1)
i )f ′(z

(l)
i ) (3.33)

4. Compute the needed partial derivatives

∂

∂W
(l)
ij

J(W, b;x, y) = a
(l)
j δ

(l+1)
i (3.34)

∂

∂b
(l)
i

J(W, b;x, y) = δ
(l+1)
i . (3.35)

Again these equations can be rewritten in a matrix-vectorial fashion with • denoting

the element-wise product. Then the algorithm looks as follows:

1. Feedforward

2. Compute output error

δ(nl) = −(y − a(nl)) • f ′(z(nl)) (3.36)

3. For l = nl − 1, nl − 2, nl − 3, ..., 2

Set

δ(l) = ((W (l))ᵀδ(l+1)) • f ′(z(l)) (3.37)

4. Compute the needed partial derivatives

∇W (l)J(W, b;x, y) = δ(l+1)(a(l))ᵀ (3.38)

∇b(l)J(W, b;x, y) = δ(l+1). (3.39)

Now the algorithm can be implemented very efficiently using linear algebra routines

[19].
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3.3 Deep Learning

3.3.4 Convolutional Neural Networks

In the former section we explained the basic ideas of neural networks and how their

algorithms work. However, for some tasks it is useful to apply special kinds of neural

networks, namely convolutional neural networks. They are used, if the data has a

grid-like structure, like pixel grids of images in the 2D case. The main difference to

conventional networks is that instead of performing matrix multiplications, a convo-

lutional network uses convolution at least once. Mathematically, convolution is an

operation that for two functions f and g returns a third function f ∗ g. Convolution

can be explained by weighing function f (also called input) with g (also called ker-

nel) and thus obtaining something like a weighted mean of f . Convolution can be

performed in continuous and discrete space, here we will focus on the discrete case

as our inputs are discrete (e.g. images expressed by pixel matrices). Furthermore, in

machine learning the term convolution is often used when actually cross-correlation

is meant, both are quite similar with the difference that convolution flips the kernel

and cross-correlation does not. Below we will refer to convolution as convolution

without kernel flipping i.e. cross-correlation, which is defined as

s[i, j] = (I ∗K)[i, j] =
∑
m

∑
n

I[i+m, j + n]K[m,n], (3.40)

where s denotes the output, I the input and K the kernel with dimensions m × n.

Figure 3.5 shows an simple example of 2D convolution.

a b c

d e f

g h i


 w x

y z

( )

aw + bx
+dy + ez

bw + cx
+ey + fz

dw + ex
+gy + hz

ew + fx
+hy + iz





Input
Kernel

Output

Figure 3.5: Convolution without kernel-flipping: Note that the output dimensions
decrease if padding (i.e. extending the input with zeros) isn’t applied.
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3 Background

The same operation could also be performed by a matrix multiplication, that

means any neural network algorithm could theoretically perform convolution, al-

though it would not make much sense. The matrix would be very large for big

inputs (e.g. images with high resolution) with a lot of same entries and most entries

equal to zero. In normal neural networks each input unit is connected to each unit

in the next layer.

In contrast, convolutional networks use kernels that are much smaller than the in-

put and thus have sparse connectivity, i.e. not every output unit interacts with every

input unit (Figure 3.6). To detect features like edges or corners in possibly large im-

ages it is not necessary to consider every pixel at once, but it is sufficient to look at

small regions with kernels of only tens of pixels. Small kernels mean that fewer pa-

rameters have to be stored and fewer operations are needed to compute the output,

thus improving memory requirements and efficiency. This way to process images

was inspired by findings in neuroscience. Cells in the visual cortex respond to small

sectors of the visual field, called receptive field. Convolutional neural networks im-

itate this concept, with the convolution kernel being the equivalent of the receptive

field [12].

x1

x5

x2

x3

x4

s1

s2

s4

s5

s3

Input
Layer

Output
Layer

x1

x2

x3

x4

x5

s1

s2

s4

s5

s3

Input
Layer

Output
Layer

Figure 3.6: Sparse connectivity: (Left) In the convolutional network only the green
highlighted units affect output s3, they are called receptive field of s3.
(Right) In the fully connected network all input units affect output unit
s3.

Another advantage of convolutional networks is parameter sharing. In traditional

fully connected neural networks each weight, i.e. each entry of the weight matrix, is

only used once. A convolutional network, however, needs significantly less weights

because each kernel is moved over the whole input using the same weight at every
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3.3 Deep Learning

position. Thus shared weights require less memory and increase learning efficiency

because fewer free parameters have to be learned.

Furthermore, parameter sharing brings the useful property of equivariance to trans-

lation. This means if the input is shifted, the output is equally shifted. E.g. if the

input is an image and convolution detects the edges, a translation in the input im-

ages leads to the same translation in the edge map. Convolution can also deal with

changing input sizes whereas conventional neural networks with fixed-shape matri-

ces require constant input sizes [12].

In a typical convolutional network architecture, each layer consists of three stages.

In the first stage various kernels perform convolutions. The output is run through a

rectified linear unit (ReLU) which is the usual activation function for convolutional

networks. The rectifier function rectifier(x) = max(0, x) is more biologically plau-

sible and efficient than sigmoid or tanh activation functions and leads to a sparse

representation of the network because real zero values can be adopted. With a ran-

dom initialization, only half of the units are activated (i.e. having non-zero outputs)

[13].

The third stage is the pooling stage, which is another important concept of convo-

lutional neural networks. Pooling is a form of non-linear down-sampling and thus

decreases the output space. The most common pooling function is max-pooling.

The output of the previous stage is divided into rectangular cells and replaced by

the maximum value in each cell. Apart from reducing computation for upper lay-

ers, pooling is also beneficial because it makes the network invariant to small local

translations. That means that even if the input is slightly shifted, the output re-

sponse does not vary [12].

Usually a convolutional neural network does not exclusively use convolution layers,

but a mixture of convolutional layers at the beginning and fully-connected layers

(with regular matrix multiplications) towards the output.
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In this chapter we want to present our method in detail. As mentioned before,

our approach does not aim to improve existing body part tracking methods, but

solely focuses on estimating the hand pose. Therefore we make use of existing hand

trackers and build our method upon them. We present a two stage architecture

with the first stage being the localization stage and the second stage being the pose

estimation stage, as shown in Figure 4.1.

Figure 4.1: The hand orientation estimation pipeline: The external hand tracker
gives an initial guess for the hand position which is used by the local-
ization stage to determine the exact hand position. The pose estimation
stage finally computes the hand orientation.
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4.1 Localization Stage

4.1 Localization Stage

The localization stage takes the proposed hand location from the external hand

tracker and uses it as initial guess. This is important because the next stage needs

a very exact estimate in order to predict the correct orientation. It turned out that

even slight translations can lead to a significant drop in performance. Therefore the

external tracker can only serve as a rough estimate.

4.1.1 Dataset Creation

We created a labeled dataset of approximately 160.000 images of left hands for

training purposes: First, we took around 1600 depth images from different point of

views varying the camera’s height and distance to the hand. The images show hands

of all kinds of poses using every possible degree of freedom.

Then we used our own keypoint annotation tool to label every image with the hand’s

center position which we defined as the center between middle finger root and ring

finger root. In perspectives where this point could not be directly seen (e.g. if the

hand is in a horizontal position) we chose the point which was directly in front of

the hidden actual center.

Around this point in every image, we drew 100 quadratic bounding boxes with a size

of 200× 200 pixels, which were all randomly translated and rotated to augment the

dataset, then cropped and downsized the images to 64× 64 pixels (see Figure 4.2).

The newly created images were randomly divided into training and test groups. A

normalized pixel vector of the hand’s center was also stored for every image.

4.1.2 Deep Network Training

We used the labeled dataset to train a convolutional neural network with four con-

volution layers (using ReLUs and max-pooling) and two fully-connected layers. The

precision of the training was measured by the mean squared error between predic-

tion and ground truth:

L(h, y) =
1

2
‖h(x)− y‖22, (4.1)

with h(x) being the predicted value and y being the ground truth value. The archi-

tecture of our network is explained in detail in Figure 4.3. Informations about the

framework and parameters we used for training are listed in Chapter 6.
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(a) (b)

(c) (d)

Figure 4.2: Dataset for the localization stage:
(a): Original depth image.
(b): Center point selected (red dot) and bounding box drawn (blue
rectangle).
(c): Bounding box randomly shifted and rotated.
(d): Cropped training example.
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Input
1 ×

64 × 64
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64 × 64
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64 × 64
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32 × 32
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32 × 32
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16 × 16

972 2
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5 × 5

conv
5 × 5

pool
2 × 2
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5 × 5

conv
5 × 5

pool
2 × 2
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Figure 4.3: Network model for the localization stage:
Green: Input image (1 channel with 64× 64 pixels).
Red: Feature maps after convolution with zero-padding of 2 and a stride
of 1.
Blue: Feature maps after max-pooling with stride of 2.
Grey: Fully-connected layers.
Note that for simplicity we do not draw every connection and feature
map.

4.1.3 Application

The trained model can be used for feature extraction. First the external body tracker

gives us the initial guess for the position of the right and left hand as a 3D vector.

We project the vector from world coordinates to 2D screen coordinates using the

following conversion: (
x(2D)

y(2D)

)
=

f

z(3D)

(
x(3D)

y(3D)

)
+

(
cx
cy

)
, (4.2)

with f and (cx, cy) denoting the camera’s intrinsic parameters focal length and opti-

cal center. Around this position we draw a fixed-size bounding box which very likely

contains the hand. The image in the bounding box is cut out, resized and mirrored

in case of a right hand (we just trained with left hands). Now our network model

uses it to predict the exact center position of the hand. In case of a right hand, the

predicted point has to be horizontally flipped back.

4.2 Pose Estimation Stage

After the localization stage we have a reliable estimate of the hand position. The

pose estimation stage now does the actual computation of the orientation. We de-

veloped two different approaches, the keypoint method and the quaternion method,
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which work almost equally well and present both because either of them could be

interesting for future scenarios.

Like in the previous stage, we created a dataset and used it to train a convolutional

neural network. Both approaches use the same dataset, but with different labels.

Figure 4.4 shows the notation for the coordinate system of the left hand.

Figure 4.4: Left hand example image with coordinate system: the red axis denotes
the x-axis, the green axis the y-axis and the blue axis the z-axis. Note
that we use right-handed coordinate systems for both the left and the
right hand, hence the x-axis is in the direction of the thumb for the right
hands, but in the opposite direction for the left hand.

4.2.1 Keypoint Approach

Using the keypoint method we do not directly try to estimate the hand’s orientation,

but three keypoints on the hand which can subsequently be used to actually compute

the explicit orientation with simple linear algebra. We chose the root of the index

finger, the root of the little finger and the center of the wrist as keypoints (see Figure

4.4).

4.2.1.1 Dataset Creation

Creating the labeled depth image dataset for the pose estimation stage is not as

straightforward in comparison to the localization stage. If the z-axis of the hand is

facing towards the camera or in the opposite direction, all keypoints are visible. With

our annotation tool, we can manually select those points in every depth image, read

out the depth and project each point from screen coordinates to world coordinates.
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4.2 Pose Estimation Stage

However, if the z-axis is facing down, up, left or right, it is more complicated because

of self-occlusion (i.e. at least one of three points is not visible).

We used a two-camera setup to deal with this problem. The cameras were placed at

different positions with overlapping fields of view, such that the palm or dorsum of

the hand was always clearly visible to one of them. We calibrated the cameras using

QR markers. After the calibration, we could annotate the points in one camera frame

and transform the 3D vectors of our keypoints to the other camera frame, where the

annotation would not have been possible otherwise. A positive side effect of this

method is that we could obtain twice as many labeled images in the same time.

Again, we only labeled left hands.

The points, which until now were located on the surface of the hand, were translated

along the z-axis to be inside the hand. This is important in order to have consistent

annotations from palm and dorsal side of the hand.

Around the center of the hand, we computed a bounding box in 3D space with a

width and height of 0.24 m and transformed the vertices of the 3D bounding box to

the screen using Equation 4.2. As a result the obtained 2D bounding box depended

on the depth of the hand, so that for every depth, the hand occupies the same

space. Then we normalized the depth to make sure that every hand lies in the same

depth range by linearly shifting the whole depth image such that the center of the

hand had the depth 0.27 m. The proportion of the hand was left unchanged. This

specific value was chosen due to former experiments with an artificial hand dataset

[25] whose images had this depth property. Furthermore we used thresholding to

remove the background setting all depth values lower than 0.1 m and higher than

0.4 m to 1 m. We augmented the dataset with factor 50 for each image. Since we

used two cameras, we got 100 labeled images for each annotation step which were

randomly split into training and test examples.

We applied the following augmentation techniques to maximize the diversity of our

dataset:

• random translation

• random rotation

• random depth shift

Figure 4.5 illustrates the generation of training examples in our two-camera setup.
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(a) Camera 1 (b) Camera 2

(c) (d)

(e) (f)

(g) (h) (i) (j)

Figure 4.5: Dataset for the pose estimation stage:
(a) and (b): Same scene from two cameras. Key points are annotated
in (a) and transformed to (b).
(c) and (d): Bounding box (blue rectangle).
(e) and (f): Bounding box randomly shifted and rotated.
(g) and (i): Cropped hand.
(h) and (j): Training example after thresholding and depth
normalization.
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We saved the keypoints as labels in the form

[x(1) y(1) z(1)] [x(2) y(2) z(2)] [x(3) y(3) z(3)], (4.3)

with x and y being the screen coordinates of the keypoint normalized with respect to

the bounding box and z being the normalized depth. Originally we created a dataset

with approximately 290.000 images. However, we realized that hand poses were not

represented equally frequent which caused our detection to favor more common

poses. In order to solve this issue, we randomly removed frequent orientations

until they were almost uniformly distributed in the dataset. With about 87.000

images, the revised dataset contains considerably less images than the big dataset,

but nevertheless achieved better results.

4.2.1.2 Deep Network Training

Like in the localization stage, we trained a convolutional neural network on the

dataset using the mean squared error loss function (Equation 4.1). The network

directly regresses the 3D keypoint locations. It consists of three convolution layers,

three pooling layers and two fully-connected layers, all using ReLUs. Figure 4.6

depicts the network architecture.

Input
1 ×

64 × 64

16 ×
63 × 63

16 ×
31 × 31

32 ×
30 × 30

32 ×
14 × 14

32 ×
15 × 15

32 ×
7 × 7

972 9
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6 × 6

pool
4 × 4

conv
6 × 6

pool
4 × 4

conv
6 × 6

pool
4 × 4

fc fc

Figure 4.6: Network model for keypoint pose estimation: Green: Input image (1
channel with 64× 64 pixels). Red: Feature maps after convolution with
zero-padding of 2 and a stride of 1. Blue: Feature maps after max-
pooling with stride of 2. Grey: Fully-connected layers. The last layer has
9 outputs (3 vectors with 3 components each. Note that for simplicity
we do not draw every connection and feature map.
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4.2.2 Quaternion Approach

By contrast to the previous method, for the quaternion approach we directly es-

timate the orientation of the hand, without having to compute it from keypoints.

We represent the orientation using unit quaternions, which can express arbitrary

3D-rotations.

4.2.2.1 Dataset Creation

We used the same dataset as described for the keypoint approach, but changed the

labels of the training examples. Hence the performance of both methods can be

easily compared.

To convert the labels from keypoints to quaternions we first compute the base vectors

x, y, z of the hand coordinate system from the keypoints (see Figure 4.4). Then we

define a rotation matrix M which transforms the hand frame to the camera frame

using the vectors of the hand coordinate system as columns:

M =

x1 y1 z1
x2 y2 z2
x3 y3 z3

 (4.4)

From this matrix we compose Matrix K

K =


x1 − y2 − z3 0 0 0
x2 + y1 y2 − x1 − z3 0 0
x3 + z1 y3 + z2 z3 − x1 − y2 0
y3 − z2 z1 − x3 x2 − y1 x1 + y2 + z3

 , (4.5)

and divide all entries by 3

K :=
K

3
. (4.6)

After computing the eigenvectors and eigenvalues of K, the quaternion q which

describes the same rotation as M is the eigenvector v of K that corresponds to the

largest eigenvalue λ.

The unit quaternion is calculated as follows:

normalize(q) =
q0 + iq1 + jq2 + kq3√
q20 + q21 + q22 + q23

. (4.7)
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4.2.2.2 Deep Network Training

Unlike the previously described network, in this approach the use of the mean

squared error loss function is not possible because the euclidean norm is not an

appropriate distance measurement for quaternion representations.

Two unit quaternions q and p represent the same orientation, if their dot product

〈q, p〉 =
∑4

i=1(qipi) equals 1 or −1. If the orientations vary highly, 〈q, p〉 is close to

0. We used this to define our own quaternion loss function

L(q, p) = 1− 〈q, p〉2, (4.8)

where q denotes the predicted quaternion and p the actual quaternion.

Additionally, our network also consists of a normalization layer after the last fully-

connected layer which normalizes the output in order to obtain unit quaternions.

This step is necessary because the loss function is designed for unit quaternions

only. The architecture of our network is illustrated in Figure 4.7.

4.2.3 Application

From the localization stage we obtain a precise estimate of the hand position.

Next, we draw a square bounding box around the hand in the depth image. The

size of the bounding box again depends on the depth of the hand. We also shift,

scale and threshold the depth as described earlier for the creation of the dataset

(see Section 4.2.1.1).

Both networks can be used for feature extraction. They take the cropped bounding

box region of the depth image as input and compute the respective representation

of the hand pose. As with the previous stage, images of the right hand have to be

mirrored before being fed into the networks. Likewise, the output also has to be

interpreted subsequently.

In case of the keypoints, it is enough to horizontally mirror the points. In case

of quaternions, we first have to compute the base vectors of the hand coordinate

system, i.e. transform the quaternion to a rotation matrix and extract the column

vectors. The resulting vectors can then be mirrored to get the actual vectors.

If we also compute the vectors of the keypoint coordinate system, we can easily

compare the results of both methods.
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Figure 4.7: Network model for quaternion pose estimation:
For lack of space the figure is split in two.
Green: Input image (1 channel with 64× 64 pixels).
Red: Feature maps after convolution with zero-padding of 2 and a stride
of 1.
Blue: Feature maps after max-pooling with stride of 2.
Grey: Fully-connected layers. The last layer has 4 outputs.
Orange: Normalization layer, converts the output from the last fully-
connected layer to unit quaternions. Note that for simplicity we do not
draw every connection and feature map.
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5
Experiments

5.1 Localization Stage

We tested the performance of the first stage of our method on an independent test

dataset. The dataset was created as described in Section 4.1.1 and contains around

3000 labeled images. For each test example, the trained network computes an es-

timate of the center point of the hand. We define the error function as the pixel

distance between the estimated point p and the ground truth point q:

error(p, q) =
|px − qx|+ |py − qy|

2
. (5.1)

The average error of our dataset is 4.2 with a standard deviation σ = 2.6 and 92.2%

of the values are ≤ 8. Figure 5.1 shows the error distribution for the whole test

dataset in a histogram.

Figure 5.1: Histogram of errors: It shows the distribution of errors for the localiza-
tion stage test dataset.
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Figure 5.2: Creation of the test dataset with different shifts:
Blue bounding box: No shift.
Green bounding box: Shift of 4 pixels.
Red bounding box: Shift of 8 pixels.
Turquoise bounding box: Shift of 12 pixels.
Violet bounding box: Shift of 16 pixels.

5.2 Pose Estimation Stage

We performed a series of experiments to evaluate the performance of the pose esti-

mation stage. We mainly focused on the comparison between the keypoint method

and the quaternion method under different aspects in order to determine the advan-

tages and disadvantages of the respective methods. For evaluation we created two

independent test datasets.

The first one contains around 7800 images of hands with evenly distributed orien-

tations. The dataset creation was similar to what we described in Section 4.2.1.1,

but with some important changes.

In each annotation step, we augmented the depth image splitting it into 5 groups:

No shift, shift of 4 pixels, shift of 8 pixels, shift of 12 pixels and shift of 16 pixels. The

shift was performed in both x and y dimensions, with the respective direction (e.g.

positive x-direction and negative y-direction) being randomly determined. Figure

5.2 illustrates this step for one test example. The purpose of this is to measure to

what extend the networks can cope with inaccuracy of the previous stage.
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Figure 5.3: Depth image after feature extraction:
The thin lines denote the ground truth coordinate system computed
from the labeled keypoints and the bold lines denote the predicted co-
ordinate system from the quaternion network. In this case the error is
approximately 10◦. The image appears pixelated because it is upscaled
from 64× 64 pixels for better visibility.

We defined the precision of the detection as the mean angle between the axes

of the predicted coordinate system x, y, z and the actual coordinate system x′, y′, z′

(see Figure 5.3). The angles are calculated as follows:

α =
180

π
arccos(〈x, x′〉) (5.2)

β =
180

π
arccos(〈y, y′〉) (5.3)

γ =
180

π
arccos(〈z, z′〉), (5.4)

with 〈·, ·〉 denoting the dot product.

The error function calculates the mean angle difference:

error(α, β, γ) =
α+ β + γ

3
. (5.5)

Smaller values for the error function mean higher precision. Figure 5.5 shows the

average error of both networks for different shifts. The quaternion method achieves

slightly better results than the keypoint method (18.7◦ vs. 19.0◦ mean error for no

shift and 18.8◦ vs. 19.5◦ for a shift of 4 pixels), with the difference becoming more

noticeable for bigger shifts (28.1◦ vs 31.6◦ for shifts of 12 pixels). The overall perfor-

mance is not affected by a shift of 4 pixels, but significantly drops for images with a
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shift of 12 pixels.

Further, we investigated to what extend the hand orientation influences the preci-

sion of the prediction. For each hand in the dataset, we calculated the angle between

the z-axis of the camera coordinate system and the z-axis of the hand coordinate sys-

tem.

The angle is about 0◦ if the dorsum of the hand is facing the camera and about

180◦ if the palm is facing the camera. For hand poses where the hand’s side faces

the camera, the angle is around 90◦. We divided the dataset in groups of simi-

lar orientations and compared the performance of the keypoint estimation and the

quaternion estimation for every group. Figure 5.6 depicts the results of this experi-

ment. Independent of the shift, the error is smallest if palm or dorsum directly face

the camera and increases with less visibility. The disparity is most significant for

images with a shift of 12 pixels, especially for the keypoint method. The increase in

error for side views can mainly be explained by two reasons. First of all, if the indi-

vidual fingers are not visible, there are less features available to be learned by the

networks. Particularly the thumb proved to be an important feature to distinguish

between front and backside of the hand. Secondly, the smaller the visible area of

the hand is, the bigger are the difficulties of the depth sensor to correctly represent

its shape because of not a number (NaN) values as illustrated in Figure 5.4.

(a) RGB image (b) Depth image

Figure 5.4: Technical limitations of the depth sensor:
The hand in the depth image does not cover the same space as in the
RGB image. Due to measurement errors, a part of the hand has NaN
values (black pixels), which means that there is no depth information.
This problem mainly occurs for side views of the hand.

36



5 Experiments

In order to have an overview about the distribution of errors we plotted histograms,

which are shown in Figure 5.7. For no shifts or shifts of 4 pixels, the vast majority

of orientations is predicted with an error of 30◦ or better, but if the shift increases a

lot of orientations are estimated incorrectly. This again emphasizes the importance

of a good performance of the localization stage.

In Figure 5.8 we compare the error distribution for all 5 shifts together in one his-

togram.

We recorded a second dataset with 1300 images with images of varying distance be-

tween camera and hand and divided the images into 10 groups of similar distances.

Figure 5.9 shows that our method achieves decent precision for distances of more

than 3 meters, with the keypoint method producing more stable results than the

quaternion method. The high variance of the quaternion values could be due to the

small dataset size.

Figures 5.10 and 5.11 show examples of images with estimated orientations of both

methods. We selected examples where both methods work well, but also examples

where one or both methods fail to estimate the correct orientation.
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(a) No shift (b) Shift of 4 pixels

(c) Shift of 8 pixels (d) Shift of 12 pixels

Figure 5.5: Average errors of feature extraction using the keypoint network and the
quaternion network for different shifts.
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(a) No shift (b) Shift of 4 pixels

(c) Shift of 8 pixels (d) Shift of 12 pixels

Figure 5.6: Average error for different hand orientations. Each bar represents the
mean error of all test examples which lie in the respective 10◦ interval
of similar hand orientations.
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(a) No shift (b) No shift

(c) Shift of 4 pixels (d) Shift of 4 pixels

(e) Shift of 12 pixels (f) Shift of 12 pixels

Figure 5.7: Error histograms with bin size of 5 in the left column and bin size of 10
in the right column.
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(a) Quaternion network

(b) Keypoint network

Figure 5.8: Histogram of errors for various shifts.

Figure 5.9: Mean error for different distances between camera and hand.
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(a) Keypoint (b) Quaternion

(c) Keypoint (d) Quaternion

(e) Keypoint (f) Quaternion

Figure 5.10: Example images with successful orientation estimation for both key-
point method (left column) and quaternion method (right column).
We drew the coordinate systems in the RGB-images for better visibility.
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(a) Keypoint: Fail (b) Quaternion: Success

(c) Keypoint: Success (d) Quaternion: Fail

(e) Keypoint: Fail (f) Quaternion: Fail

Figure 5.11: Example images with (partially) unsuccessful orientation estimation.
We drew the coordinate systems in the RGB-images for better visibility.
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6
Implementation Details

6.1 Camera

We use the Asus Xtion PRO LIVE RGB-D camera to record depth images for the

dataset and the hand pose estimation. The camera is similar to the widely know Mi-
crosoft Kinect camera, but it is smaller and does not need an external power supply.

It uses a PrimeSense Sensor and has a field of view of 58◦ horizontally and 45◦

vertically. The camera supports different resolutions, we use a VGA resolution of

640 × 480 with 30Hz frame rate for both RGB and depth images. The depth range

lies between 0.8 meters and 3.5 meters. It can be connected to the computer via

USB [14].

Figure 6.1: Asus Xtion PRO LIVE [3]
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6.2 GPU

A deep neural network training requires a lot of computational power. Using GPUs

instead of CPUs gives a significant speed boost because linear algebra routines can

be computed efficiently in parallel.

For our deep network training we use a NVIDIA GeForce GTX Titan Black GPU. It

operates at a frequency of 889 MHz and has 6 GB RAM [1]. The NVIDIA driver

version is 346.72 and we use NVIDIA CUDA 7.0 to accelerate the training.

6.3 CPU

In contrast to training, feature extraction should not require special hardware to run

in real-time. We use an Intel Core i5-4200 CPU with 2.5 GHz and achieve high frame

rates, even though it is just an ordinary notebook processor. This demonstrates that

our method is universally applicable.

6.4 Software

Our approach uses C++ and Python with various libraries.

First of all, the software framework which handles the camera-computer connection

is ROS (Robot Operating System) [11], an open source library for robot applications.

It provides packages like OpenNI which we use as camera driver and OpenNI tracker
[9], the skeleton tracker that gives us the initial guess for the hand position. We also

use the tf (transformations) package to interpret the output of the skeleton tracker.

We implemented the code for the generation of the dataset in C++ using the

OpenCV library [8] for image processing. For the vector, matrix or quaternion rep-

resentation as well as linear algebra calculations we use the Eigen library [4].

The two-camera setup was calibrated using ArUco markers and the corresponding

marker detection library [2] plus the Point Cloud Library (PCL) [10] to get the trans-

formation between the cameras.

We wrote a Python script to combine training images and the associated labels and

chose HDF5 [5], a library and file format for storing and managing data, as repre-

sentation for the training examples.
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6.5 Deep Network Training

We use Caffe [15], a deep learning framework developed by the Berkeley Vision and
Learning Center (BVLC). It is implemented in C++ and open source, so we could

adapt it to fit our needs. For the quaternion pose estimation network we imple-

mented a quaternion normalization layer and a quaternion loss layer. Caffe runs on

both CPUs and GPUs and also provides useful tools for feature extraction or training

evaluation.

The network architecture can be defined in plaintext protocol buffer schema (pro-
totxt), a file format developed by Google. Learned models are not saved in human-

readable text anymore, they use the binary protocol buffer (binaryproto) .caffemodel
file format. The convolutional network architecture consists of different layers, e.g.

convolutional layers, with several parameters to define the behavior. Figure 6.2

shows an example of a convolutional layer. The training parameters are also defined

in a prototxt file. Table 6.1 lists the parameters we used for training our networks.

Parameter Localization Keypoint Quaternion
Iterations 300.000 300.000 450.000
Learning rate #1 0.01 0.01 0.001
Learning rate #2 0.05 0.05 0.005
Learning rate #3 0.001 0.001 0.0001
Learning rate #4 - - 0.00005
Momentum 0.9 0.9 0.9
Weight decay 0.0005 0.0005 0.0005
Batch size training 256 256 256
Batch size test 64 128 64
# Training images 143029 78491 78491
# Test images 15778 8719 8719

Table 6.1: This table shows which parameters we used to train the deep networks.
The learning rate was decreased every 100.000 iterations. For each
network we use the weight configuration at the end of the respective
training.

Caffe has the convenient feature that it creates snapshots of the learned weights at

certain points. Therefore, a training can be easily paused and resumed, even with

different parameters (e.g. a smaller learning rate).
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1 l a y e r {
2 name : " conv1 "
3 type : " Convolut ion "
4 bottom : " data "
5 top : " conv1 "
6 param {
7 l r _mul t : 1
8 decay_mult : 1
9 }

10 param {
11 l r _mul t : 2
12 decay_mult : 0
13 }
14 convolution_param {
15 num_output : 32
16 pad : 2
17 k e r n e l _ s i z e : 6
18 s t r i d e : 1
19 w e i g h t _ f i l l e r {
20 type : " gauss ian "
21 s td : 0.1
22 }
23 b i a s _ f i l l e r {
24 type : " cons tant "
25 value : 1
26 }
27 }
28 }

Figure 6.2: An example of the definition of a convolutional layer:
The layer takes the data blob as input (provided by the previous layer)
and produces the conv1 layer. The output has 32 feature maps that were
created by 6 × 6 convolution kernels and a stride of 1. Zero-padding is
applied, so the input is extended by two rows of zeros on each bound-
ary. The weights are initialized randomly with a gaussian distribution
and the bias terms are initialized constantly. lr_mult is a learning rate
adjustment for weights or biases. Usually the bias learning rate is twice
as large as the weight learning rate because this can lead to better con-
vergence rates [7]. decay_mult is an adjustment for the weight decay.
It is zero for the bias terms.
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6.6 Feature Extraction

We use two different methods for feature extraction. To evaluate the performance

of the trained networks, we use Caffe’s feature extraction script to create a LevelDB
file including the predicted labels of every test image. LevelDB is a fast key-value

storage library [6].

We wrote a Python script which compares the actual label with the predicted label in

the LevelDB file for each test image and thus measures the precision of the network

(see Chapter 5).

As the real-time feature extraction requires a fast runtime, we implemented it in

C++. It estimates the orientation of both hands at the same time for single images

from a video stream with 30 frame per second on our CPU.
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Conclusion

In this thesis we presented a method to estimate the hand’s orientation from sin-

gle depth images in real-time, which can be applied as an add-on to an arbitrary

human body part tracker/detector. We propose a two-stage architecture where the

first stage improves the predicted hand position of the external tracker and precisely

locates the center point of the hand and the second stage estimates the hand’s ori-

entation. Both stages use deep convolutional neural networks trained on labeled

real hand datasets. We developed an efficient method to label difficult hand poses

(e.g. due to self-occlusion) using two calibrated depth cameras placed at different

positions. Our augmentation pipeline allows to create big datasets in short time.

We presented two approaches to estimate the hand’s orientation, one based on key-

points and the second one based on quaternions.

We performed various experiments to evaluate the different aspects of our method.

In more than 90% of cases, the point the localization stage predicts is less than 8

pixels away from the ground truth center point of the hand. Both orientation es-

timation methods can deal with uncertainty of the previous stage. Even with an

error of 8 pixels, the quaternion approach and the keypoint approach have an error

of only 21.4◦ and 23.8◦, respectively. If the error of the localization stage is higher,

the performance significantly drops. Overall, the quaternion method achieved bet-

ter results than the keypoint approach, particularly when we tested how they could

cope with uncertainty from the localization stage. Not all hand poses can be esti-

mated equally well. If neither palm nor dorsum of the hand face the camera, the

error is considerably higher. Especially the keypoint method underperforms for such

of poses. In summary, the quaternion method achieves a lower average estimation

error and is more robust.
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7.1 Future Work

Our approach is yet unable to deal with object interactions. Since this is an impor-

tant feature in a lot of human-robot interaction scenarios, it is the major target of

future improvements. The dataset could be extended with images of hands holding

objects or being partially occluded. Until now our approach can only handle self-

occlusions.

Even tough the camera is an RGB-D camera, we do not use color images. Color

based hand segmentation could make the orientation estimation more stable, espe-

cially for hand poses where palm and dorsum are not visible and the depth sensor

produces NaN values. Another approach to improve the performance for difficult

poses would be giving up the even distribution of poses in the dataset extending it

with more training examples of difficult poses. In addition, the keypoint method

could be upgraded to not only estimate three keypoints, but multiple keypoints for

every finger in order to estimate the fully articulated hand pose.
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