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Abstract

Reinforcement learning (RL) from sparse rewards suffers from high sample complexity,

which can make the learning of complex robot manipulation tasks infeasible or

very time-consuming. Without a guiding reward signal, the agent has to randomly

explore a potentially large environment in order to stumble upon a sparse goal

state. We propose Adaptive Curriculum Generation from Demonstrations (ACGD),

a model-free deep RL method that overcomes exploration difficulties by using a small

set of human demonstrations to build a reverse curriculum of initial states. Our

algorithm automatically schedules start states and adaptively sets the difficulty of

task parameters such that the policy learns at the appropriate level of difficulty. In

experiments, our approach shows superior performance in comparison to standard

RL or other curriculum learning methods. We demonstrate successful zero-shot

sim-to-real transfer of a policy for block stacking that was trained with domain

randomization. The end-to-end visuomotor policy successfully manages to stack

blocks in 67% of the cases and has a success rate of 93% for picking up blocks.
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1 Introduction

Recently, reinforcement learning (RL) has had notable successes such as learning to

play Atari games from pixel input (Mnih et al. (2013)) or beating the world champion

in the board game Go (Silver et al. (2016)). In the field of robotic manipulation

however, learning robot control policies with reinforcement learning still remains a

challenging problem, especially when training on real hardware. This is due to noisy

sensor data, high-dimensional continuous action spaces, infeasible parallelization

because of high material costs, long training times and safety concerns.

Model-based methods theoretically promise to be more data efficient, but they re-

quire an accurate model of the environment, which can be prohibitively hard to

learn for robotic tasks with complex, contact-rich dynamics. If no accurate model is

available, model-free methods can be superior and are often preferred, but their high

sample complexity makes training directly on real hardware extremely challenging

and time-consuming. Training in simulation and transferring the learned policy on

the physical robot can mitigate some of the problems, but in a sparse reward setting,

naive reinforcement learning still suffers from low sample efficiency. This means that

an agent needs a prohibitive amount of random exploration to encounter goal states

that yield a sparse reward. A sparse reward function, as opposed to a dense reward

function, is not informative about the direction in which to explore the state space.

Nevertheless, sparse rewards tend to be preferred because of their simplicity and

their unbiased nature. In order to enable learning of complex, episodic tasks in a

reasonable amount of time, it is necessary to guide the exploration in such a way that

states which exhibit reward signals are visited frequently. Intuitively, by starting the
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1 Introduction

exploration from states nearby a goal region, the agent will reach those states more

often compared to starts from states that are further away. Using demonstrations to

shape the distribution of initial states has been investigated in the context of robotics

by Popov et al. (2017), Nair et al. (2017), Zhu et al. (2018) or Fan et al. (2018),

but none of these methods fully exploit the potential of curriculum learning from

demonstration states.

We propose a novel method that we call Adaptive Curriculum Generation from Demon-

strations (ACGD). It only requires a small set of around a dozen task demonstration

in simulation, which can be recorded in a short time. The algorithm automatically

builds a reverse curriculum of increasingly more difficult start states, such that the

RL agent always learns at the appropriate level of difficulty. Furthermore, it also uses

the curriculum learning framework to gradually learn visual domain randomization

and dynamics randomization until the policy exhibits the desired degree of domain

invariance. The policy is learned end-to-end from raw pixels and proprioceptive

features and produces actions for the robot controller.

We evaluate the performance of our approach on a real world block stacking task with

the KUKA iiwa robot and demonstrate successful zero-shot (i.e. without additional

training) sim-to-real transfer. Although there is a significant domain gap to bridge,

the robot succeeds to stack the blocks in 67% of the cases, without ever being trained

on real hardware.

Additionally, we present a modular RL Python framework for training, transfer and

control of the real KUKA robot, which adheres to the OpenAI Gym (Brockman

et al. (2016)) environment architecture standard. It features an extendable simulated

robot learning environment with integrated domain and dynamics randomization. Its

modularity enables to train and test any OpenAI Gym compatible RL algorithm in

both the simulated and the real robot environment.
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2 Related Work

In this chapter, we will review previous work that has been done in the context of

reinforcement learning for robotics manipulation. We compare approaches that were

learned directly on real hardware with approaches that involve training in simulation

and domain transfer. In addition, we give an overview about methods to reduce

sample complexity of RL, such as curriculum learning.

2.1 RL Training on a Physical Robot

Training directly on the physical device has the advantage that there is no domain

gap to bridge for the deployment of the learned policy. This means that the training

samples are generated from the same distribution as the data of the environment at

test time, which is not the case for policies trained in simulation.

Generally, approaches can be distinguished according to their input modalities.

Learning a neural network directly from pixels (end-to-end) is desirable, since the

policy can autonomously choose the features that are relevant for a task. On the other

hand, training on the state space requires an additional object recognition system,

but it also drastically reduces the amount of network parameters and ultimately saves

training time.

Since time is a limited resource on physical systems and deep RL policies generally

need millions of interaction steps to explore the environment, earlier methods often

completely avoided training neural networks. Instead, they relied on pre-structured

policy representations such as splines or motor primitives to teach a robot simple

behavior like hitting a baseball with a bat (Peters and Schaal (2006)). Deisenroth
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et al. (2011) propose a model-based RL technique to learn a probabilistic dynamics

model for block stacking from scratch on a low-cost robotic arm in combination

with a block tracking system. While having the advantage of being sample-efficient

enough to fully train policies in reasonable amounts of time on real hardware, these

approaches hardly generalize to more variable task setups and only perform well in

narrow ranges of trajectories.

A more recent model-based approach uses Guided Policy Search to learn robot

manipulation tasks like shape sorting end-to-end (from raw camera input to motor

torques) (Levine et al. (2015)). Model-based methods can be more sample-efficient

than model-free methods, but for complex tasks, learning the model is a hard problem

on its own. Model-free methods need to make less assumptions about the environment

and are often preferred for learning complex policies, although actions have to be

taken to improve exploration.

Gu* et al. (2017) use multiple robotic platforms in parallel to train Normalized

Advantage Functions (NAF) asynchronously from scratch for a door opening task,

but they do not use raw pixel input and the door position is kept fix throughout the

training.

In general, there are two contrary control paradigms: in open-loop systems, the

planning phase is decoupled from the actual execution of the task. This is especially

common practise for grasping systems, Bousmalis et al. (2017) e.g. demonstrate

successful grasping of unseen objects using a grasp proposal network together with a

manually designed servoing function. On the other hand, although harder to train, a

closed-loop method that learns perception, planning and acting jointly is expected

to result in more robust behavior and in the emergence of intelligent manipulation

policies (Kalashnikov et al. (2018)). It can directly react to unforeseen events, for

instance directly regrasping an object after a failed grasping attempt. Since tasks

that require a lot of object interaction such as block stacking heavily rely on direct

feedback from the environment, our approach learns the whole pipeline from vision

to action outputs jointly. Kalashnikov et al. (2018) use a setup of seven identical
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robots to learn closed-loop grasping of unknown objects in a self-supervised manner.

A recent sample-efficient method proposed by Riedmiller et al. (2018) teaches a robot

to perform a block pushing task in only about 10 hours training time on a single

robot. They use a hierarchical architecture with a learned scheduling policy to pick

auxiliary tasks in order to learn increasingly more complicated problems until it is

able to complete the main task; thus, it can be understood as a form of implicit

curriculum learning. Our method may also be seen as scheduling increasingly more

difficult sub-tasks, however without explicitly defining auxiliary tasks.

2.2 Deep RL for Robotics using Simulation

The sample complexity of RL algorithms makes it very tricky and time-consuming

to learn a neural network policy from scratch on a real robot. Therefore researchers

have sought to train policies in simulation and deploy it on real hardware by means of

domain transfer (Pinto et al. (2017), Peng et al. (2017), Zhu et al. (2018)) or fine-tuning

(Rusu et al. (2016), James et al. (2018)). The advantages of this approach include

drastically increased learning speed through parallelization and distributed training,

no human involvement during training, no necessity for safety measures and new

algorithmic possibilities having access to simulator state information. Nevertheless,

even in simulation the efficient exploration of the state space remains the crucial

factor for successful learning. Naive Reinforcement Learning in difficult environments

is likely to fail or to converge to suboptimal solutions. A number of approaches exist

to help exploration, they are summarized in the following sections.

2.2.1 Reward Shaping vs Sparse Rewards

Reward shaping is one way to improve exploration by continuously providing the

agent with information about how to get closer to the goal, e.g. via a function that

encodes the distance between gripper and object. Popov et al. (2017) use a shaped

reward function consisting of multiple weighted terms for a block stacking task similar
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to ours, albeit only in simulation. However, defining a dense reward function is

non-trivial for most tasks and requires domain knowledge as well as a significant

amount of hand engineering (Andrychowicz et al. (2017)). Furthermore, it can bias

the policy and prevent it from finding innovative solutions. For some tasks it might

be even unknown how the desired behavior should look like, whereas it is mostly easy

to define criteria for task completion.

Hence, using sparse rewards is usually preferred, even though other measures have to

be taken to reduce sample complexity.

2.2.2 Hindsight Experience Reply

Hindsight Experience Replay (HER) (Andrychowicz et al. (2017)) is a widely used

method that enables learning from sparse rewards in cases where actually no reward

was received by storing unsuccessful trajectories with different goals in the replay

buffer. This may be seen as constructing a curriculum implicitly without having to

manually design it. HER can be used with any off-policy algorithm such as DDPG

(Lillicrap et al. (2015)), examples of successful application to robotics can be seen in

Nair et al. (2017), Peng et al. (2017) or Pinto et al. (2017). While HER works very

well for improving precision in task like reaching or pushing, it is less effective for

tasks with multiple stages and bottleneck moments like stacking, which is why we did

not consider it suitable for our task setup. Moreover, when training end-to-end from

images storing a transition with a different (visual) goal introduces a new challenge,

although recent findings propose to extend HER to handle visual goals using a GAN

(Sahni et al. (2019)).

2.2.3 Learning from Demonstrations and Curriculum Learning

Including human demonstrations into the training process is another widely used

practise to reduce sample complexity . This can be implemented in several ways. One

direct example is to use behavior cloning (BC) to pretrain the policy or augmenting

the objective function with a BC loss. (Nair et al. (2017), Rajeswaran et al. (2017)).
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Due to the compounding-error problem, the performance of BC strongly depends on

the availability of a sufficiently large amount of demonstration data, which can be

time-consuming to collect. Additionally BC requires demonstrations with aligned

state and action spaces and it may bias the agent to overfit to suboptimal policies in

case of an imperfect teacher.

Zhu et al. (2018) show that a handful of demonstrations are enough to learn a block

stacking task with general adversarial imitation learning (GAIL) and PPO. Their

approach shares several characteristics with ours, for instance training the policy

with a combination of camera images and proprioceptive state vectors, using domain

randomization (DR) for zero-shot sim-to-real transfer or leveraging exploration by

restarting episodes from demonstration states, although their focus lies principally in

combining imitation learning and RL, while we further explore curriculum learning.

Their reported success rate of 35% for the block stacking task on a physical robot is

significantly lower than our success rate of 67%, even if it’s hard to compare results

across different robots and varying task setups.

It is common practise in the RL robot manipulation research to overcome exploration

difficulties by altering the start state distribution with states visited in demonstrations,

either by uniform sampling (Popov et al. (2017), Nair et al. (2017), Zhu et al. (2018))

or by constructing a reverse curriculum sampling linearly backwards from the end of

recorded trajectories (Fan et al. (2018)). However, none of these works fully exploit

the possibilities of using demonstrations for curriculum generation. In contrast, our

approach adaptively selects the appropriate difficultly of the start state distribution

in order to build an optimized reverse curriculum. Florensa et al. (2017) propose

another method for reverse curriculum generation that requires only a single state

in which the task is achieved. The curriculum is generated gradually by sampling

actions to move further away from the given goal and thus reversely expanding the

start state distribution with increasingly more difficult states. Our approach is built

upon the same key insight, that reaching the goal from most start states with random

exploration is infeasible in reasonable amounts of time, whereas it is usually easy to
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accomplish from states nearby a goal. Furthermore, their notion of "good starts", i.e.

starts from where the agent sometimes receives a reward, but neither too often nor too

rarely, inspired us to define bounds for the desired success rate. While Florensa et al.

(2017) explicitly maintain a set of good starts, expanding it gradually by sampling

nearby and removing samples that fall out of the desired reward thresholds, we adapt

a difficulty parameter to sample start states that ensure expected rewards within the

bounds. The authors demonstrate the ability of their method on simulated robot

manipulation tasks such as Key Insertion or Ring on Peg. However, these tasks

are in principal pure locomotion tasks that do not contain any reverse bottlenecks,

which is why randomly sampling backwards in action space works well. For object

manipulation tasks like block stacking, the inverse of the stacking trajectory would

have to be randomly discovered. Being a difficult exploration problem by itself, one

may assume that this would fail. In our case, demonstration trajectories are able to

guide the exploration through theoretically arbitrarily difficult maneuvers.

An novel approach for curriculum learning is presented by Held et al. (2017), who

show that a GAN can be trained to automatically generate goals of intermediate

difficulty. Their framework is able to handle multimodal goal distribution, without

requiring any prior knowledge about the task or the environment. Even though it is

yet to be tested in a robotics experiment and it cannot handle visual goals so far, we

still think it is an interesting approach and might investigate further in future work.

2.2.4 Sim-to-Real Transfer

Policies that were exclusively learned on simulated data usually cannot be straight-

forwardly applied to a physical robot due to the domain shift caused by sensor noise,

modeling inaccuracies or unknown real-world dynamics. In this section we distinguish

two major sim-to-real paradigms: zero-shot transfer and fine-tuning. In the former,

policies are trained exclusively in simulation and run directly on the physical robot,

while the latter involves additional real world training.

Previous zero-shot approaches like James and Johns (2016) tried to reduce the reality
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gap by using highly realistic synthetic images from a 3D-simulator, but high-fidelity

rendering does not only drastically slow down training time, it also narrows down

the applicability of the policy to a very specific setup.

Tobin et al. (2017) and James et al. (2017) concurrently demonstrated that domain

transfer greatly benefits from using visual domain randomization, i.e. randomizing

visual features such as the camera position, lighting or object textures, because it

comes at low cost and helps the policy learn scene invariant features. Especially

the method of Tobin et al. (2017) is extensively used in robotics, for instance in

Pinto et al. (2017) for learning zero-shot sim-to-real transfer of a block picking and

block moving task on a 7-DOF Fetch robot. Our approach also uses scene and

vision randomization, but we use slightly varying object colors instead of randomized

object textures, similar to Zhu et al. (2018). Since our vision system operates in

first-person view with the camera mounted on the robot flange, there is significantly

less background clutter, thus more extensive DR would be unnecessary and can be

even detrimental for the agent as it makes the learning problem much harder.

Apart from vision, also the dynamics and physical properties of the robot play an

important role in sim-to-real transfer. Peng et al. (2017) show that by randomizing

dynamics parameters (95 in total) such as mass, joint damping or action timestep, a

policy can be robustly transferred to a real robot even under poor calibration and

unfamiliar dynamics. They concentrate solely on non-visual domain transfer and

therefore use a motion capture system to track the object location. Preliminary

experiments have shown that dynamics randomization is important for successful

policy transfer, but we do not randomize the setup to the same extent and do not

feed the dynamics parameters to the value function.

Fine-tuning is another strategy to adapt policies to the real world. However, there

is the risk of catastrophic forgetting, in which the performance degrades due to the

destructing of previously learned features. Rusu et al. (2016) present a framework to

bridge the reality gap using Progressive Nets, that mitigates some of the downsides of

naive fine-tuning by retaining columns of originally learned features to prevent their
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destruction. They demonstrate on a block reaching task, that a policy pretrained

in simulation, can be transferred to a real robot in less than 4 hours training time

without using any domain randomization. Progressive nets prove to achieve higher

scores than fine-tuning, while training from scratch on the real robot fails completely.

So far our approach does not change the policy after the training in simulation is

completed and it remains part of future work to investigate potential improvements

using fine-tuning or progressive nets.
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3 Background

3.1 Reinforcement Learning

We define our reinforcement learning (RL) setting as a discrete-time finite-horizon

Markov decision process (MDP). An agent interacts with an environment that is

described by a tuple (S,A,P,R, ρ0, T ). At every timestep t, the agent is in state

st ∈ S, executes an action at ∈ A, transitions to the next state st+1 with the

probability P(st+1|st, at) and receives a scalar reward rt(st, at) ∈ R. At the beginning

of an episode, the initial state s0 is sampled from the start state distribution ρ0.

In a finite-horizon setting, after T timesteps, the environment is reset to an initial

state. Note that in order to simplify notation, we use the term state (i.e. the full

underlying state containing all information) and state observation (e.g. a camera

image) interchangeably and denote both with an s (Riedmiller et al. (2018)).

The agent selects actions according to a policy π, which can be either deterministic

or stochastic. In the following, we will assume the policy to be stochastic, with action

drawn as samples from a distribution over actions π(at|st). We define the return Rt

as the sum of discounted rewards R(τt:T ) =
∑T

i=t γ
i−tr(si, ai)), where τt:T denotes a

trajectory τ = (st, at, ..., sT , aT ) with actions at ∼ π(·|st) and γ is a discount factor

for future rewards. The goal of reinforcement learning is to learn a policy π to pick

actions maximizing the expected return Es0∼ρ0,π[R0].

The difficulty of the problem is, that the agent does not know the environment at

the beginning of the training and is unsure about which actions to take. Thus, it has

to explore the environment to find the potentially sparse regions that yield a (high)

reward. If the reward does not encode information about how to get to these goal
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states, exploration effectively becomes random search in the environment. While

off-policy methods can use an arbitrary explorative strategy, on-policy methods use

their current policy for exploration. As a result, off-policy methods can learn from

past experience and tend to be more sample-efficient than on-policy methods, but

can also be unstable when combined with function approximation and bootstrapping

(Sutton and Barto (1998)).

A value function V π(st) = Eπ[Rt|st] is defined as the expected return from a state st

when following policy π. Similarly, an action-value function Qπ(at, st) = Eπ[Rt|at, st]

is the expected return when taking action at in state st and then following the

policy π. Using both definitions, one can define the advantage function Aπ(at, st) =

Qπ(at, st)− V π(st), which measures how much better or worse it is to take action at

instead of the policy’s preferred action.

3.1.1 Reward Functions

A reward function R : S ×A → R is an arbitrary mapping from states and actions

to a scalar. If the reward function is non-zero in only a sparse amount of states it

is called a sparse reward. For the purpose of this work we define a sparse reward

function as

r(s, a) =


ψ(s), if s ∈ G

0, otherwise,
(1)

where G denotes the set of goal states, in which the agent receives a reward and ψ(s)

defines the reward surface. In the simplest case ψ(s) = 1, which is called a binary

reward. On the other hand, with a dense reward function (also called shaped reward),

the agent constantly experiences a reward signal, that guides it to the goal, e.g. by

means of a distance function.

3.1.2 Value-based Methods

Value-based methods do not directly learn a policy π, but they try to approximate

an optimal value function V ∗(s) or Q∗(a, s) and use it to reconstruct the policy. The
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3.2 Proximal Policy Optimization (PPO)

policy can be obtained by selecting the action, for which the action-value function

predicts the highest expected return with a certain probability and a random action

otherwise, in order to account for the stochasticity of the policy.

3.1.3 Policy Gradient Methods

Policy gradient methods directly learn a parameterized stochastic policy πθ(at|st) with

parameters θ to maximize the expected return. These methods have the advantage,

that they scale well to large or continuous action spaces. The goal is to find the

parameters θ to maximize the objective function

arg max
θ

J(θ) = Es0∼ρ0 [R(τ0:T )]. (2)

One way to solve this is by taking a stochastic gradient ascent step in the direction

of the estimated policy gradient g := ∇θJ(θ) (Schulman et al. (2016)). There are

several ways to formulate the policy gradient estimator, the most commonly used

form is

ĝ = Êt[∇θ log πθ(at|st)Ât], (3)

where Ât is an estimate of the advantage function at timestep t (Schulman et al.

(2017)). In practise, both policy and advantage function are represented by neural

networks with parameters θ and φ respectively. Such a method, that estimates both

policy and value function, is also called actor-critic method.

3.2 Proximal Policy Optimization (PPO)

In the naive form, vanilla policy gradient methods often suffer from low sample-

efficiency and high variance, which can lead to instability during training. Trust

region methods have been proposed to improve the stability by constraining the size

13
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of the policy updates:

arg max
θ

J(θ)

s.t. Ê[KL(πθold(·|st) ‖ πθ(·|st))] ≤ δ.
(4)

The trust region radius δ is a constraint on the maximum KL-divergence between

the current policy πθ and the previous policy πθold and prevents distructively large

policy updates (Peng et al. (2018)). However, it can be difficult to optimize Eq. (4)

directly and would require a second-order method. Proximal Policy Optimization

(PPO) (Schulman et al. (2017)) replaces the hard constraint by a clipped surrogate

objective

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ε, 1 + ε)Ât)], (5)

where rt(θ) denotes the probability ratio rt(θ) = πθ(at|st)
πθold (at|st)

between the current and

the old policy, which can be interpreted as an approximation to the KL-divergence,

because it also measures the similarity between the policies. The second term of the

objective function clip(rt(θ), 1− ε, 1 + ε)Ât) clips the probability ratio rt(θ), which

prevents the policy update from becoming too large, similar to a trust region method.

The whole term serves as a lower bound on the unclipped objective that limits the

change, but only in the case it would make the objective improve.

This enables PPO to speed up learning with multiple epochs of minibatch updates

while still retaining stability, which would not be possible with standard policy gradient

methods. At the same time, PPO is easier to implement than other trust region

methods like trust region policy optimization (TRPO) and can be more generally

applied (Schulman et al. (2017)).

3.3 Behavior Cloning

As opposed to reinforcement learning, imitation learning requires the availability of

expert demonstrations in order to learn optimal behavior in the environment. A
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3.3 Behavior Cloning

demonstration dataset DBC = {(si, ai)}i=1...N consists of pairs of states and actions.

Behavior cloning (BC) formulates the imitation learning problem as supervised

learning by optimizing the loss function

LBC =
N∑
i=1

‖π(si|θ)− ai‖2. (6)

Note that the learned policy can only be as good as the provided demonstrations and

for a good performance, the size of the dataset has to be large enough.
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4 Robot Setup

Our setup consists of a KUKA LBR iiwa robot equipped with a 2-finger parallel

gripper and a camera mounted on the gripper (see Fig. 1). We present an easy-to-

use Python user interface based upon the OpenAI Gym environment architecture

(Brockman et al. (2016)) for real-time end-to-end control of the robot. Fig. 2 shows

an overview of the setup.

Additionally we provide a modular OpenAI Gym reinforcement learning environment

for training robots in simulation to learn manipulation tasks such as stacking. The

policies that are learned in simulation can be deployed on the physical KUKA robot.

This chapter will explain the various software and hardware components in detail.

4.1 Robot

The KUKA LBR iiwa 14 R820 is a lightweight industrial robotic arm with seven

revolute joints. Its control server runs the system software KUKA Sunrise.OS which

provides the KUKA RoboticsAPI, a Java interface offering flexible high-level control

functionality. Since there is no Python interface, we designed a Java wrapper library

called IIWAJavaController. It works as an intermediary module, that receives

actions from Python via UDP messages and calls RoboticsAPI functions. Our

controller offers two distinct control modes: Joint position control and Cartesian

position control. With the former, the desired position of all seven joints is sent to

the robot, which allows for a maximum of flexibility, but also increases the difficulty

of the learning problem. Therefore we only use joint position control to preposition

the robot precisely at the beginning of a task.
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4.1 Robot

Figure 1: Photo of robot setup. It shows a KUKA LBR iiwa robot, equipped with
a Schunk WSG 50 2-finger parallel gripper and an Intel Realsense camera mounted
on the flange.

In Cartesian position control, the desired pose of the end effector is used to control

the robot via inverse kinematics. For this purpose we make use of the SmartServo

module of the RoboticsAPI. It features an impedance mode for a compliant behavior

of the robot, implemented as a virtual spring damper system with configurable values

for stiffness and damping. This is important for the safety of the robot and the

workspace in case of unpredictable behavior of an RL policy. Additionally, we limit

the orientation of the end effector to always face down, fixing pitch and roll as they are

not necessary to solve our tasks. Thus, the robot’s degrees of freedom are reduced to

four, which significantly simplifies the task learning. Accordingly, an action message

consists of three components for the X,Y and Z-coordinates and one component for

the rotation around the Z-axis.

The IIWAJavaController can handle both absolute and relative coordinates. In

our experiments with closed-loop policies learned by RL, we use relative control.

Relative actions are specified with respect to the camera frame, which means that the
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4 Robot Setup

Figure 2: This figure shows the components of our modular robotic setup. The
Python module IIWAEnv is the central interface of the system, using the OpenAI
Gym environment architecture. It receives input actions either by a learned policy or
manually by a 3D mouse, sends commands to robot and gripper and receives camera
images.
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4.2 Gripper

X-coordinate of an action corresponds to a lateral movement perpendicular to the

direction of the camera view. This is important since the camera coordinate system

is the only reference frame of a vision-based policy.

In theory it would be beneficial to control the robot using velocity control, because

many tasks require both fine-grained manipulation and straightforward locomotion

over longer distances, but KUKA currently does not provide a velocity control interface.

However, our implementation of relative Cartesian position control implicitly allows

for variable velocities and can be seen as an approximation of velocity control. The

range of the individual relative increments lies in [−1, 1] cm for the position and in

[−0.2, 0.2] rad for the rotation of the end effector. The larger a component becomes,

the faster the internal robot controller will accelerate the joint motors, because it

plans to move along a longer trajectory. Action messages are sent with a fixed frame

rate of 20 Hz. When a new action is received, the robot controller seamlessly switches

over to pursue the current target position without stopping, which results in a smooth

trajectory.

The IIWAJavaController also queries the robot’s state and returns an info message

containing the Cartesian end effector pose and the joint angles, which supplement

the camera images as part of the observation for the RL agent.

4.2 Gripper

The robot is equipped with a Schunk WSG 50 2-finger parallel gripper. We mounted

3D-printed extensions to the gripper fingers to improve the camera perspective of the

tool center point. The insides of the fingers are padded with a thin layer of rubber

foam so that objects are less likely to slip away while being grasped.

For interfacing the gripper, we developed a custom Python module optimized for

high-speed control using the WSG command protocol. It sends actions as binary

messages via a TCP connection to the gripper and receives information about the

gripper state, such as the opening width, in return.

Compared to the robot which receives continuous actions, the gripper is controlled in
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4 Robot Setup

Figure 3: Intel Realsense SR300 RGB-D Camera.

a discrete manner, i.e. an action can either open or close the fingers. If the output of

a policy is continuous, values above or below a certain threshold are assigned to open

or close the gripper respectively.

The intended usage of the gripper is executing pre-planned grasping trajectories, rather

than doing high-frequency closed-loop iterative control as done by our reinforcement

learning policy. As a consequence, the gripper imposes a significant delay, that has

to be considered when transferring policies from simulation.

4.3 Camera

Our setup uses an Intel Realsense SR300 RGB-D camera (Fig. 3). Currently only

RGB images are being used for reinforcement learning, because the quality of depth

images suffers from close ranges. We mounted the camera on the gripper flange

with a 3D-printed camera mount to have an egocentric view of the scene. Compared

to a static camera position, this allows being closer to the relevant parts of the

scene, always focusing on the tool center point and having a perspective with less

background clutter, which ultimately facilitates the sim-to-real domain transfer.

The disadvantages of an egocentric camera position on the other hand are possible

occlusions of task objects through gripper fingers and the risk of losing sight of objects.

Additionally, a moving camera can result in blurred images, which can partially be

compensated by shorter exposure times.

The camera provides a resolution of up to 1920× 1080 pixels, but we downscale and
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4.4 Workspace

crop images to a size of 84× 84 pixels to facilitate the training of RL networks. The

camera is connected to the computer via USB and its driver offers Python bindings.

4.4 Workspace

To prevent damage to itself and the environment, the robot operates in a compliant

workspace. It is mounted on a table, next to an area covered by a layer of rubber foam

topped by a styrofoam board. This yields a plane surface for precise manipulation

tasks, but still allows for a maximum of safety. Even in case of unforeseen behavior,

a collision would not have damaging consequences. Furthermore, we define limits

to constrain the allowed end effector positions within box-shaped boundaries of

50× 30× 17 cm, such that the end effector cannot touch the table and all locations

within the limits are accessible for the robot.

4.5 3D mouse

The 3Dconnexion SpaceMouse Wireless (Fig. 4) is used as an input device for both

the real robot and the simulation. It seamlessly integrates in our robot environments

and offers a precise control of robot and gripper, e.g. for the purpose of recording

demonstrations or manually testing the feasibility of a task.

Figure 4: 3Dconnexion SpaceMouse Wireless
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4.6 Python Gym Environment for Robot Control

The Python module IIWAEnv is the central control interface of our setup. It adheres

to the architecture of the OpenAI Gym environment for reinforcement learning. Thus,

it can be used in combination with a large variety of RL frameworks. A trained

reinforcement learning policy can be straightforwardly deployed on the robot just by

calling the step function with the policy’s action and feeding the obtained observation

back into the policy. Additionally we provide code to control the robot with a 3D

mouse instead, which is important for testing, data collection or designing new tasks.

See Table 1 for an overview of the module.

4.7 Simulation

Training on the physical robot is infeasible due to the sample-complexity of RL

algorithms. We created the IIWASimEnv, an OpenAI Gym training environment with

a simulated KUKA iiwa robot using the PyBullet physics simulator (Coumans (2015)).

PyBullet offers fast GPU rendering, optimized collision handling and an integrated

inverse kinematics library. Several simulation instances can be run simultaneously

allowing parallel training. Our Gym environment features a modular architecture

with submodules for the definition of new tasks or the integration of different robot

manipulators. The simulated setup closely resembles the real one, which facilitates

the sim-to-real transfer of policies (see Fig. 5 for a comparison). The dynamics

parameters and the exact camera position of the simulated robot are calibrated

automatically to match the behavior of the real robot adequately. To further reduce

the domain gap between simulation and reality, the environment includes flexible

domain randomization of both the visual domain and the robot dynamics. For

an overview of the randomized quantities, see Table 2. Task difficulties (e.g. the

initial gripper height or the randomness of start states) and the degree of domain

randomization can be individually set to adapt the complexity of the learning problem.
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4.7 Simulation

def init

Initialize environment
Set up action and observation space
Establish network connections to robot and gripper
inputs:
dpos (0.01) - position offset for relative Cartesian control
drot (0.2) - rotation offset for relative Cartesian control
joint_vel (0.1) - maximum joint velocity (except wrist joint)
gripper_rot_vel (0.3) - maximum velocity for wrist joint
joint_acc (0.3) - maximum joint acceleration
freq (20) - frequency
act_type (continuous) - action space (multi-discrete or continuous)
obs_type (img_state) - observation space (image or image-state)
use_impedance (True) - use impedance mode

def step

Call Python modules GripperController and IIWAController

to send action message to gripper and IIWAJavaController

via TCP and UDP respectively
Get camera image and query robot and gripper state
inputs:
action - 5D numpy array in range [−1, 1]

returns:
observation - camera image (and robot state)

def reset

Reset robot to fixed or random position
Open gripper
inputs:
reset_at_random_pos (False) - reset at fixed or random position
returns:
observation - camera image (and robot state)

def render Display camera image

Table 1: Methods of Python module IIWAEnv, an OpenAI Gym environment for
controlling the real KUKA iiwa robot. Default values of inputs are in parentheses.
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4 Robot Setup

(a) Real World Robot Setup (b) Robot Setup in Simulation

(c) Real World Camera View (d) Camera View in Simulation

Figure 5: Comparison of the physical robot setup with the robot setup in simulation.
Our approach uses the images from the wrist-mounted camera ((c) and (d)) as policy
input.
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4.8 Simulation Calibration

4.8 Simulation Calibration

The goal of calibration is to make the simulation as similar to the real robot as

possible. Our approach calibrates both the dynamics and the camera position of

the simulation. This minimizes the domain gap that needs to be covered by domain

randomization. However, there is no accurate open-source dynamics model of the

KUKA iiwa robot publicly available and it would be tedious to do a full model

identification without having insight into the KUKA RoboticsAPI.

As a workaround, we tune a small set of parameters that are primarily responsible

for the dynamics of the robot in simulation:

• Maximum position change for relative Cartesian position control

• Maximum rotation change for relative Cartesian position control

• Joint velocity of joints 1-6

• Joint velocity of wrist joint

• Velocity of gripper fingers

• Gripper delay

As a first step, we record a random demonstration trajectory on the real robot

and manually precalibrate the parameters, such that replaying the same actions in

simulation leads to a coarsely similar trajectory. Then, we fine-tune the parameters

iteratively with differential evolution (Storn and Price (1997)), optimizing the trajec-

tory similarity. The resulting calibration does not exactly replicate the real robot

but because the policies are learned with closed-loop control, they are inherently self-

correcting. In addition, since we train the simulation with dynamics randomization

(see Chapter 5), the policies become to some extend invariant of a specific calibration.

For the calibration of the camera pose and intrinsics, we apply a similar procedure

and also use a mixture of manual pretuning and differential evolution.
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We present Adaptive Curriculum Generation from Demonstrations (ACGD), a simple

framework to overcome exploration difficulties of Reinforcement Learning from sparse

rewards in simulated environments. It requires only a handful of human demonstra-

tions to generate a reverse curriculum of start states for the RL agent. In order to

achieve fast learning speeds, ACGD adaptively schedules more and more difficult

subtasks and gradually increases the degree of domain randomization. This allows

learning complex robot control policies end-to-end in simulation that transfer to

the real world without any fine-tuning or training on the physical robot (zero-shot

transfer).

We demonstrate the potential of our method on a real-world block stacking task (see

Chapter 6). Fig. 6 illustrates the overview of our robot learning method.

5.1 Assumptions

Our method is motivated by the following assumptions:

1. A policy trained with a limited amount of task instances will provide a good

initialization for learning to solve similar task instances (see Held et al. (2017)).

2. A small set of human demonstrations should be easily obtainable in simulation

and provide efficient guidance.

3. The training environment can be reset to an arbitrary state of the demonstration

trajectories.
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5.2 Curriculum Generation from Demonstrations

Figure 6: We overcome exploration for robot manipulation tasks with sparse rewards,
by collecting a handful of human demonstrations and training a policy in simulation
with curriculum learning from demonstrations and domain randomization. The
learning is bootstrapped through resets to states visited by demonstrations. The
resulting policy can be run on the real robot without further fine-tuning and achieves
a success rate of 67% in a block stacking task.

4. The agent is more likely to experience a reward starting from a state taken

from the end of a demonstration, than from a state taken from the beginning.

5. There exists a set of environment parameters that allow to gradually increase

the task difficulty during training. This may include parameters like the initial

gripper height or the degree of domain randomization.

5.2 Curriculum Generation from Demonstrations

5.2.1 Collecting Demonstrations

The first step of our approach is to record a setD = {st}t=1...T of human demonstration

trajectories of the task in simulation, where st denotes the full state of the environment

at time t. This can be done e.g. by using a 3D mouse to control the robot’s end

effector. It is not necessary for the demonstrations to be optimal, since the method

only uses the recorded states to create a curriculum of start states. Demonstration

actions are discarded and will not prevent the learned policy from surpassing human
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performance. For instance, our learned policies are able to stack much faster than

the human teachers. In contrast to behavior cloning methods that need a large batch

of demonstrations to work well, our method does not require more than a dozen

demonstrations.

5.2.2 Reverse Curriculum Learning

The intuition behind our method is as follows: At the beginning of training the

agent does not have any knowledge about the task and without a dense reward

function, there is no information about which actions it should take. The probability

of experiencing a reward by random exploration depends on the amount of actions

the agent needs to reach a goal state.

If the agent starts exploring the environment from a state st≤T ∈ d of a demonstration

trajectory d ∈ D of length T , it is possible to reach the goal in at least T − t steps. At

the beginning of a training, we sample start states from the end of the demonstrations

where we expect to obtain rewards by uninformed exploration. In the course of

the training, we gradually shift the sampling region towards the beginning of the

demonstration trajectories until the start state distribution coincides with the original

initial state distribution ρ0. We call this a reverse curriculum because the policy

learns to solve the task backwards, starting in the vicinity of goal states and learning

to master increasingly more difficult subtasks until the complete task is learned.

Whereas a policy trained with behavior cloning tries to mimic demonstrator actions

as closely as possible and is prone to inherit suboptimal behavior, a policy trained

with reverse curriculum learning is still free to find innovative solutions to the task.

We show this empirically by comparing policies which, despite being trained on the

same demonstration data, develop completely different block stacking strategies.

As opposed to Fan et al. (2018), who claim that it is important for reverse curriculum

learning to include previously sampled sections throughout the training in order to

prevent catastrophic forgetting, our experiments suggest that this is not the case.
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Starting the exploration from a new set of demonstration start states, the agent is

likely to revisit previous start states, from where it already learned to reach the goal.

5.2.3 Adaptive Curriculum Generation

The challenge of curriculum learning from demonstrations is to decide a good strategy

to choose the appropriate difficulty of start states. Previous approaches sampled

states uniformly (Popov et al. (2017), Nair et al. (2017), Zhu et al. (2018)) or linearly

backwards (Fan et al. (2018)).

However, sampling states from the end of the demonstration trajectories for too long

unnecessarily slows down the training because the policy is trained on subtasks that

it has already learned to master. On the other hand, sampling more difficult start

states too fast may prevent the policy from experiencing any reward at all.

Intuitively, we want the probability of experiencing a reward to be neither too high,

nor too low. Instead, our goal is to confine the probability within the interval [α, β]:

We want to choose t such that

α ≤ P(Rt > 0|π) ≤ β, (7)

where Rt denotes the return of a rollout started from a state sampled from the

demonstration data at timestep t. This is inspired by the Goals of Intermediate

Difficulty in Held et al. (2017). For sparse reward functions, the probability P(Rt >

0|π) corresponds to the expected success rate of the task.

We introduce the parameter δd ∈ [0, 1] for setting the difficulty of the demonstration

resets, where a δd close to 0 corresponds to easier start states sampled from the end of

the demonstration trajectories and a δd close to 1 corresponds to earlier start states.

At the beginning of the training, δd is initialized with 0. By recording the last n

training returns, we are estimating the expected success rate of Eq. (7), which will

increase, as soon as the policy starts to learn. If at one point the success rate srd

surpasses the upper bound β, we increase the difficulty of the task by adding a small
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ε to δd. Likewise, if the policy over a period of n episodes on average fails to achieve

higher returns than the lower bound α, we subtract ε from δd:

δ
(i+1)
d =


δ
(i)
d + ε, if srd > β

δ
(i)
d − ε, if srd < α

δ
(i)
d , otherwise.

(8)

This update rule allows the policy to adaptively choose the best learning speed

throughout the training. Especially tasks with long episode lengths often do not have

a constant difficulty at every stage. Consider for instance a stacking task: it consists

of both easier parts that only require straight locomotion and more difficult bottleneck

moments like grasping and placing the object. By adaptively generating a curriculum

of demonstration start states, the learning algorithm automatically dedicates more

time on hard parts of the task, while not wasting time at straightforward sections.

5.2.4 Mixing Demonstration Resets and Regular Resets

Since there are possibly infinitely many random task configurations (e.g. random initial

object positions) and the start states are drawn from only a handful of demonstrations,

there is the risk of overfitting to the demonstration data set. Therefore we mix

demonstration resets with regular resets from the original start state distribution ρ0.

We call the mixing ratio λ ∈ [0, 1], it is a hyperparameter that controls the probability

of doing a regular reset.

Intuitively, we want λ to grow during training. Initially, the curriculum schedules

start states sampled from the end of the demonstrations. Adding regular starts at

this point would most likely result in the agent not receiving any reward. Later, if

the curriculum samples earlier starts and the policy learns to master longer sections

of the task, there is also an increased probability of reaching the goal from an original

initial state.
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At iteration i of in total N iterations, we empirically choose λ to be

λ(i) := 0.5(srr + (i/N)), (9)

where srr denotes the success rate of episodes initialized with regular resets and i/N

is the training progress.

5.3 Adaptive Task Difficulty and Domain Randomization

Apart from the distance between start states and goal states, the difficulty of a task

also depends a set of task specific factors, such as the degree of domain randomization,

intrinsics of the physics simulator or criteria that define the task completion. As an

example, the complexity of block stacking depends significantly on the bounciness of

the blocks. Therefore, we design our tasks such that their difficulty can be controlled

by a set of parameters H with each parameter h ∈ [0, 1]. See Table 2 for a list of

parameters that control the difficulty of the stacking task.

In addition to the purpose of determining the difficulty of start states, we also use the

parameter δd to set the relative difficulty of the task parameters H. Since we want to

set the difficulty of regular resets independently of the difficulty of demonstration

resets, we introduce a second difficulty parameter δr and update it analogously to Eq.

(8) according to the success rate srr.

At every reset, we adapt the task difficulty parameters:

for each h ∈ H : h =


δd if demonstration reset

δr if regular reset.
(10)

When resetting from demonstrations, some parameters (e.g. the initial gripper height)

are already predetermined by the demonstration state and will not be affected by the

adaptive difficulty of Eq. (10).

The task parameters H can be split into two groups. First, there are parameters that
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directly control the task difficulty, for instance the bounciness of objects or the initial

height of the gripper. Changing them has an immediate impact on the complexity,

e.g. by increasing the minimum amount of steps that are necessary to solve the task

or by making the criteria for task completion harder. Secondly, there are parameters

that control the domain randomization and only contribute indirectly to the task

difficulty. If we were only focusing on learning a task in simulation, it would not

be beneficial to introduce randomness into the environment, but since the goal is to

transfer policies to the real world, domain randomization is essential for a successful

policy transfer. It helps the policy to learn robust, meaningful features, makes it

less prone to overfitting and reduces the need for exact calibration of the robot’s

dynamics. Previous methods have demonstrated successful applications of visual

domain randomization (Tobin et al. (2017)) and dynamics randomization (Peng et al.

(2017) to the field of robotic manipulation.

We randomize the visual appearance of scene and objects (e.g. color, size, position)

as well as the robot’s dynamics. In addition, we further postprocess the camera image

with standard image enhancement such as changing hue and saturation or adding

blur. The parameters that we use for domain randomization are listed in Table 2.

In contrast to the first group of task parameters, these properties do not directly

influence the difficulty of the task. Instead, it is their degree of randomness, i.e.

how much a property can vary, that determines the difficulty. Too much domain

randomization might prevent the policy from learning the task at all.

Therefore we apply the concept of curriculum learning also to domain adaptation.

Our experiments clearly suggest, that it is beneficial to increase the degree of domain

randomization during training with the parameters δd and δr. By doing that, the

policy adapts to domain randomization gradually without being overburdened. At the

beginning of the training when the policy network still has not learned any features,

we set domain randomization to a minimum. The expectation is, that in this easy

setting, the policy will start to learn fast. As soon as the success rate rises, our

algorithm increases the difficulty parameters, which in turn has a direct effect on the
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(a) Scene View (not used for training)

(b) Gripper View

Figure 7: Domain randomization for the stacking task. The images show instances
of different initial states. We randomize camera properties (pose and FoV), object
properties (position, size, color), scene properties (table position and color, robot
pose, light source) and do a randomized image postprocessing). Note that (a) only
serves as an illustration of different task setups and does not feature the full visual
domain randomization. Our approach uses only egocentric camera images from (b).
See Table 2 for a complete list of randomized parameters.

range of randomness in the environment.

To our knowledge, we are the first to use curriculum learning for domain adapta-

tion. See Fig. 7 for an illustration of initial states and observations under domain

randomization.

5.4 Algorithm

Our algorithm is described in detail in Algorithm 1. It can be used in combination with

any on-policy reinforcement learning algorithm, in our experiments we use PPO to

update the policy. Apart from the typical PPO hyperparameters, the hyperparameters

33



5 Method

that have to be chosen for our method are the desired success interval [α, β], the

difficulty increment ε and the width of the window for sampling demonstration states

σ.

5.5 Sim-to-Real Transfer

We perform zero-shot policy transfer to the real world, this means that the policy

is trained entirely in simulation and run on the real robot without any further fine-

tuning or training. When comparing simulation and real world, there is a noticeable

domain gap for the visual domain and a discrepancy in the physical behavior of the

robot. The environment in simulation only coarsely matches the real task setup

and PyBullet’s rendering engine is lacking in detail. Depending on the weather and

time, the lighting conditions and visual appearance of the real world can change

significantly. Due to KUKA’s RoboticsAPI being closed source, it is tedious to do a

full model identification for the robot’s dynamics. Hence, we only roughly calibrated

the simulated robot, which is explained in Chapter 4. Besides that, PyBullet is

optimized for performance, rather than being a highly realistic physics simulation.

The key factor for a successful policy transfer is domain randomization because it

forces the policy to learn domain invariant features. Our approach works on the real

robot without any object detection, tracking or position information other than the

unprocessed camera image and the proprioceptive state of the robot manipulator

itself. The policy is learned end-to-end, with a single neural network that takes

raw pixels and the robot state as input and directly outputs actions for the robot

controller. We demonstrate the ability of our method in the experiment section by

learning a block stacking task, for which we a achieve a success rate of 67%.

34



5.5 Sim-to-Real Transfer

Algorithm 1 : Adaptive Curriculum Generation from Demonstrations
Algorithm train_policy:

Input : Iterations N , initial policy π0, interval [α, β], increment ε
Output : final policy πN

1 srd, srr, δd, δr ← 0;
2 for i← 1 to N do
3 rollouts← generate_rollouts();
4 πi ← update_policy(rollouts, πi−1);
5 update success rate srd;
6 update success rate srr;

/* update difficulty parameters */

7 δ
(i+1)
d =


δ
(i)
d + ε, if srd > β

δ
(i)
d − ε, if srd < α

δ
(i)
d , otherwise

;

8 δ
(i+1)
r =


δ
(i)
r + ε, if srr > β

δ
(i)
r − ε, if srr < α

δ
(i)
r , otherwise

end

Function generate_rollouts:
Input :Batchsize B, policy πi, success rate srr, training progress prog,

difficulty δd, difficulty δr, demonstrations D, episode length T ,
window size σ, env params H

1 rollouts← [];
2 for j ← 0 to B do
3 sample action aj ∼ πi;
4 execute action aj and receive state sj+1, observation oj and reward rj ;
5 rollouts.append([sj+1, oj , rj ]);
6 if terminal s then
7 with probability p = 0.5(srr + prog) do

/* reset from demonstrations */
8 for each parameter h ∈ H : set h← δd;
9 sample demonstration d ∼ D;

10 sample timestep t ∼ unif((1− δd)T − σ, (1− δd)T + σ);
11 set start state to demonstration: sj+1 ← dt
12 otherwise

/* regular reset */
13 for each parameter h ∈ H : set h← δr;
14 sample start state from start state distribution: sj+1 ∼ ρ0;

end
return rollouts;
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6 Experiments

In this chapter, we demonstrate the ability of our approach to solve complex robot

manipulation tasks with only a handful of demonstrations. This is exemplarily shown

by means of a block stacking task. We compare the performance of our method

with various baselines and conduct several ablation studies to assess the relative

importance of the individual components of our method. The main questions we are

answering in this chapter are:

• How does Adaptive Curriculum Learning from Demonstration compare to

existing curriculum learning methods and other baselines?

• How does curriculum learning for domain randomization affect the learning

speed and final performance?

• How well do policies learned exclusively in simulation transfer to the real robot?

Before addressing these questions, we describe the task setup in detail.

6.1 Stacking Task

Block stacking is a popular benchmark task for robot manipulation and has been

examined by previous work, e.g. in Deisenroth et al. (2011), Popov et al. (2017),

Zhu et al. (2018) and Riedmiller et al. (2018). To solve the task, the agent has to

stack one block on top of the other one, this involves several important subproblems

such as reaching, grasping and placing objects and features complex, contact-rich

interactions, that require substantial precision. Since it is a task of long episode
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6.1 Stacking Task

length that requires at least around 100 steps to be solved with our choice of per-step

action ranges, it is particularly well suited for curriculum learning.

We use the robot setup described in Chapter 4 and only explain the task specific parts

in this section. The task setup consists of a table with two small, square, colored

blocks that are randomly placed in the workspace’s center.

The stacking task is implicitly parameterized by a large number of parameters, for the

purpose of constructing a training curriculum we separate those that have a sufficient

contribution on the task difficulty in a set H. See Table 2 for a complete list of the

task difficulty parameters.

6.1.1 Goal Definition and Reward Specification

Defining what constitutes a successful stack is not trivial, it involves a trade-off between

certainty of stability and measurement time. We consider a stack as successful, if

for a period of 10 consecutive timesteps, the blue block is in contact with the red

block, but not with the table nor with the gripper and the velocity of the blue block

is below a certain threshold after the 10 timesteps. The latter turned out to be an

important indicator for the stability of a stack, because it is possible that the upper

block falls down, even after being on top of the other one for more than 10 steps.

The agent has 150 timesteps to complete the task. The sparse reward function used

for the experiments is defined as:

rt =


1− φ, if stack successful

0, otherwise,
(11)

where φ ∈ (0, 1) is a penalty for the movement of the bottom block during the

execution of the task. See the Appendix for a definition of φ.
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Parameters Parameter
directly
controls
task
difficulty

Parameter
controls
DR

Parameter
affects
demo
reset

Parameter
affects
regular
reset

Initial gripper height X X
Lateral gripper offset X X
Distance between blocks X X
Bounciness of objects
(physics parameter) X X X

Num. steps stacked
for task success X X X

Min. final block vel.
for task success X X

Table height X X
Height of the robot base X X
Initial gripper rotation X X
Block size X X
Gripper speed X X X
Position offset of relative
Cartesian position control X X X

Camera field of view (FOV) X X X
Camera position X X X
Camera orientation X X X
Block color (varying hue) X X X
Table color X X X
Camera image brightness X X X
Camera image contrast X X X
Camera image hue X X X
Camera image saturation X X X
Camera image sharpness X X X
Camera image blur X X X
Light direction X X X

Table 2: Task parameters. These are the parameters H that are used to adapt
the task difficulty of the stacking task. They can be split in two groups: those that
directly control the task difficulty and those that control the domain randomization
and only contribute indirectly to the task difficulty. Some parameters are already
predetermined by a demonstration reset and only affect regular resets.
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6.1 Stacking Task

6.1.2 Environment Observations

The observations that the policy receives are a combination of the camera image and

a state vector. The image observation It is an RGB image of 84 × 84 pixels from

a camera mounted on the robot flange. Additionally, we use a proprioceptive state

vector that consists of:

• zgripper, the gripper height above the table

• θgripper, the angle that specifies the rotation of the gripper

• wfinger, the opening width of the gripper fingers

• te, the remaining timesteps of the episode.

We normalize the state vector to the range [0, 1] Both observation modalities together

form the full observation:

ot = {It, [zgripper, θgripper, wfinger, te]}. (12)

Consistent with results of Kalashnikov et al. (2018), our experiments show that it is

essential for the performance of the policy to include the propriopceptive features.

For a discussion, see Section 6.3.4.

6.1.3 Action Space

We control our robot with Cartesian position control using inverse kinematics.

An action at is a 5 dimensional continuous vector

at = [∆x,∆y,∆z,∆θ, agripper]. (13)

The first three entries are relative position changes for the Cartesian controller, defined

with respect to the camera frame. The fourth entry corresponds to the yaw rotation

of the gripper and the last entry is the gripper action. Action outputs are clipped
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to the range [−1, 1]. Since actions are continuous, but the gripper requires discrete

actions, agripper is discretized to {−1, 1}.

6.2 Training Details

6.2.1 RL Algorithm

The policy network is trained using Proximal Policy Optimization (PPO). We use a

PyTorch (Paszke et al. (2017)) implementation of the algorithm (Kostrikov (2018)).

However, our approach can be used with an any on-policy reinforcement learning

algorithm. The training runs 8 environments in parallel for a total number of 107

timesteps, this takes approximately 11 hours on a system with one GPU and 16 cores.

With a batch size of 512 per environment, this equals 2440 PPO updates. Every

20 update steps, we evaluate the performance of the policy on the maximum task

difficulty in order to obtain comparable results between different methods. For having

more reliable results, the final evaluation is done with 100 episodes.

The default parameters for our algorithm are ε = 0.002 and [α, β] = [0.4, 0.6]. We

use the Adam (Kingma and Ba (2015)) optimizer with an initial learning rate of

2.5× 10−4, which is linearly decayed in the course of the training. See Table 3 of the

Appendix for a complete list of hyperparameters that are used for the experiments.

6.2.2 Network Architecture

The neural network consists of two separate input streams for the different observation

modalities. The image observations of size 84× 84× 3 are passed through a convo-

lutional neural network (CNN) of 3 layers with rectified linear unit nonlinearities

(RELU), followed by a fully-connected layer with 512 units. The CNN uses the

network architecture of Mnih et al. (2015). The first convolutional layer has 32 filters

of size 8× 8 with a stride of 4, followed by a layer of 64 filters of size 4× 4 with stride

2 and a last layer with 32 filters of size 3× 3 with stride 1.

The state observations are processed by a multilayer perceptron (MLP) with 2 layers
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6.2 Training Details

Figure 8: Architecture of the policy network. The policy takes camera and state
observations as input and outputs actions for the robot controller. Convolutional
layers are shown in red, fully-connected layers in blue. The value function has the
same architecture apart from having a single output for the value. Policy and value
function share the weights of the CNN (dotted box).

of 64 units each and tanh nonlinearities.

Then, both input streams are concatenated and passed through another MLP with

128 layers and tanh nonlinearities, followed by an output layer.The policy output

is the mean and standard deviation of a diagonal Gaussian distribution over the

5-dimensional continuous actions. The value function outputs a scalar value. Policy

and value function have the same architecture and share weights for the CNN part

of the network, the rest is separate for both. See Fig. 8 for an illustration of the

network architecture.

6.2.3 Demonstrations

We recorded a set of 10 task demonstrations with a 3D mouse and stored the PyBullet

simulator state for every timestep, this allows us to reset the environment to an

arbitrary step of the demonstration dataset. At each reset, the parameters defining

the domain randomization can be resampled. We gave the teacher 200 timesteps to

finish an episode, but only use the first 150 steps, because we do not want to reset
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from an already solved state. For the behavior cloning baseline, we gathered 100

demonstrations with states and actions.

6.3 Experiments in Simulation

All experiments were done on the stacking task in simulation with the same hyper-

parameter setup and the same network architecture, unless stated otherwise. Every

experiment was run five times with different random seeds to account for the large

variance of RL. The plots show the mean and standard deviation of the evaluation

episodes across all seeds, which were always run on the highest (i.e. final) task

difficulty. Fig. 9 shows how the training success rates and the difficulty parameters

correspond to each other during training.

Figure 9: This plot illustrates the increase in difficulties (δ) during training depending
on the success rates. The difficulty of demonstration resets δd is increased, if the
success rate of episodes with demonstration resets exceeds the defined threshold (gray
area). The same happens for regular resets (δr). The experiment uses a default
interval of [α, β] = [0.4, 0.6]. Our algorithm adapts the δ parameters such that the
success rates of demonstration resets and regular resets stay within that interval, this
leads to a faster learning speed.

42



6.3 Experiments in Simulation

6.3.1 Baseline Experiments

In this experiment we compare the performance of our method with standard RL

baselines without curriculum learning.

Ours (ACGD): Full method, adaptive curriculum learning from demonstrations

with adaptive task difficulty.

RL sparse: RL without demonstrations or adaptive task difficulty.

RL shaped: RL without demonstrations or adaptive task difficulty, but with dense

rewards. The reward function consists of the euclidean distance between gripper and

the blue block and the euclidean distance between the blue block and a point above

the red block. Additionally, there is an intermediate sparse reward given, when the

blue block is successfully lifted off the ground and a final sparse reward, when the

task is completed.

BC init + RL sparse rewards: The policy is pretrained with behavior cloning

and used as an initialization for RL with sparse rewards.

Results

Fig. 10 shows the results of the experiment. Our method was the only one that was

able to successfully learn the task. It achieves an average final success rate of 91%

and an average final reward of 76%. The rewards are lower than the success rate,

because the policies do not learn to always avoid touching the red block, which causes

a small reward penalty. Interestingly, the training with multiple random seeds led

to the emergence of distinctive behavior. Some policies keep the gripper’s rotation

to a minimum and rather move it backwards and sideways, while others first rotate

the gripper and move it forward afterwards. This suggests, that the bias introduced

by human demonstrations does not prevent the policies from learning individual

behavior.

Without a curriculum or a shaped reward function to guide exploration, RL sparse

is not able to learn any meaningful actions. The shaped reward function helps the

policy to get closer to the goal, it successfully manages to grasp the blue block and
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Figure 10: Baseline experiment. We compare our approach with standard RL
baselines without curriculum learning on the block stacking task in simulation. The
plot shows averages and standard deviations of the evaluation success rate over five
runs with different random seeds. Out method is the only one to successfully learn
the complete task.

brings it near the red block, but it fails to learn to stack. The policy initialized with

BC shows some promising behavior and even succeeds in some cases to lift the block.

However, RL is not able to improve the pretrained policy and the lack of any reward

signals leads to catastrophic forgetting of the previously acquired skills.

6.3.2 Curriculum Experiment

In this experiment we are evaluating different ways to build a curriculum of start

states.

Ours: See baselines experiment.

Linear w/ task difficulty params and regular resets: Linear reverse curriculum

learning from demonstrations. The difficulty of start states and the task parameters

increases proportional to the training time. The probability of regular resets also

increases linearly.

Linear w/ regular resets: Like the former, but without changing the difficulty of
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6.3 Experiments in Simulation

Figure 11: Curriculum experiment. We compare our curriculum learning approach
with other curriculum learning methods. The plot shows averages and standard
deviations of the evaluation success rate over five runs with different random seeds.

the task parameters, which are kept at the most difficult level for the whole training.

Similar to (Fan et al. (2018)).

Linear: Linear reverse curriculum, without changing the difficulty of the task

parameters and without regular resets.

Uniform: Uniform curriculum. For the whole training, states are sampled uniformly

from the demonstration data, no regular resets.

Results

Fig. 11 shows the results of the experiment. Our methods clearly outperforms the

other forms of curriculum learning. It starts to learn faster and achieves a better

final performance, with a success rate being more than 20% higher than that of the

linear curriculum. It also shows less variance across the seeds, which indicates that

the adaptive curriculum improves the stability of the learning.

Linear w/ task difficulty params and regular resets and Linear w/ regular resets show

similar performance, that is much higher than the linear curriculum without regular
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resets. This shows how important it is not to learn exclusively from demonstrations,

especially if the amount of demonstration data is limited. Uniform curriculum and the

simple linear curriculum both perform very poorly, achieving less than 20% success

rate on average.

6.3.3 Task Difficulty Experiment

Here, we evaluate if adaptively changing the parameters H for the task difficulty and

domain randomization improves the training speed and performance.

Adaptive task difficulty params (Ours): Full model.

Adaptive task difficulty params, shared δ: Like the former, but a shared

difficulty parameter δ for demonstration resets and regular resets (corresponds to

using δr = δd).

Constant task difficulty params: Adaptive curriculum from demonstrations, but

without changing the difficulty of the task parameters H. All parameters were set to

the maximum difficulty for the complete training.

Results

Fig. 12 shows the results of the experiment. The full model learns faster and has a

higher final success rate. Constant task difficulty params shows a particularly high

variance, some random seeds performed almost as good as the full model, while others

do not even achieve 50% success rate.

6.3.4 Observation Experiment

In this experiment, we investigate the impact of different input configurations on the

performance.

Img + state: Default network of our method, see Fig. 8.

Img only: Learning purely from the camera images. We reduced the network

architecture to the CNN part of the default network (dotted box of Fig. 8).
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6.3 Experiments in Simulation

Figure 12: Task difficulty experiment. Here we evaluate the influence of setting
the parameters H adaptively with the δ parameters. The plot shows averages and
standard deviations of the evaluation success rate over five runs with different random
seeds.

Results

Fig. 13 shows the results of the experiment. Both configurations start to learn fast,

but the full model clearly outperforms the Img only network. We assume, that this is

because the state vector contains valuable information that is not or only insufficiently

contained in the images. The height of the blue block above the red block before

being dropped is probably the most decisive factor for a successful stack. Due to

the perspective of the wrist-mounted camera, the blue block often partially occludes

the red block, which makes it difficult to precisely infer the height. The gripper can

only rotate approximately 175◦ to both sides before reaching its limits, if images are

the only input there is no possibility to know if a limit is reached soon. Including

the remaining episode steps can be important information for the value function. If

for instance the block was not successfully stacked on the first trial, the policy will

attempt to regrasp the block, but since there is significantly less time available, the

value function of Img only is likely to overestimate the value of this state.
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Figure 13: Observation experiment. We evaluate how the performance depends
on the input modality. The plot shows averages and standard deviations of the
evaluation success rate over five runs with different random seeds.

6.4 Real World Experiment

We demonstrate the capabilities of our approach on a real world block stacking task

using the robot setup described in Chapter 4. We train a policy in simulation with

Adaptive Curriculum Generation from Demonstrations and domain randomization

and run it on the real KUKA iiwa robot without any training in the real world

(zero-shot transfer). To evaluate the final performance, we run the policy 30 times on

the real robot. We set a constant episode length of 300 timesteps (15 seconds). On

each reset, we randomly place the blocks in different configurations underneath the

gripper, similar to the task in simulation.

The robot manages to successfully stack blocks within the given time in 67% of the

cases and it achieves to at least grasp the blue block in 93% of the attempts. Fig.

15 illustrates a successful task execution. In cases when the policy was not able to

stack the block the first time, the policy still attempted a second trial and sometimes

succeeded, if there was enough time left. Fig. 14 plots the success rate of the task in

dependency of the episode length.
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6.4 Real World Experiment

Figure 14: This figure plots the success rate of the real world stacking task in
dependency of the episode length. The robot has 300 timesteps to complete the task.
Out of 30 trials it managed to stack successfully 20 times.

It is difficult to compare the performance with previous approaches, since there is no

clear benchmark task which allows for a fair comparison. Even for block stacking,

every approach uses a unique setup with a different robot, a different control interface

and the material and size of the objects heavily influence the task difficulty. Zhu

et al. (2018), who also do zero-shot sim-to-real transfer of a block stacking task, is

the work that comes closest to our approach. However, they use large deformable

foam blocks for stacking, these are easier to grasp because they are made of foam

and easier to stack because they are larger. They report a success rate of 35% for

stacking on the real robot, which is significantly lower than ours.
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Figure 15: Example of real stacking. The photos show snapshots of the process
(top left to bottom right). The results are achieved with zero-shot sim-to-real transfer
of a policy on the real KUKA iiwa robot.
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7 Conclusion

Reinforcement learning is a powerful, general tool for learning policies that can solve

complex robot manipulation tasks. However, when training from sparse rewards, RL

suffers from low sample efficiency, because there is no reward signal to guide the

agent’s exploration. Bootstrapping exploration by the use of demonstrations has been

proposed by several approaches in the past and showed promising results.

In this thesis we studied how a curriculum of initial states sampled from demonstration

data can be constructed for fast learning speed. We presented Adaptive Curriculum

Generation from Demonstrations, an effective curriculum schedule that can be used

in combination with an arbitrary on-policy RL algorithm. It automatically generates

a reverse curriculum by gradually scheduling increasingly more difficult start states

and adaptively setting the difficulty of task parameters, depending on the current

performance of the policy. To the best of our knowledge, it is the first time that

domain and dynamics randomization for sim-to-real transfer have been learned with

curriculum learning.

Our experiments show, that our approach is superior to conventional curriculum

learning methods in terms of learning speed and final performance. We demonstrate

successful zero-shot sim-to-real transfer of a policy for block stacking. The policy

manages to successfully stack blocks with the real KUKA robot in 67% of the cases

and has a success rate of 93% for grasping. In addition, we provide a easy-to-use

OpenAI Gym Python environment for training policies in simulation and controlling

the physical robot.
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7.1 Future Work

In future work, in order to further emphasize the relevance, we want to test our

approach on an additional set of more difficult tasks, which can not be solved with

ordinary curriculum learning. While block stacking has many characteristics that

make it a suitable RL benchmark task, a new task could potentially also be closer to

realistic industrial applications, for instance one could teach the robot to autonomously

screw bolts.

There are also certain aspects of our approach that leave room for improvement.

Currently, every task parameter h ∈ H is updated homogeneously according to one

difficulty parameter δ, but probably there are situations where it would be more

beneficial to further increase the difficulty of some subset of parameters, while leaving

others fixed. We would like to investigate the possibility to independently set the

difficulty of the individual parameters. The Goal GAN of Held et al. (2017) seems to

be a promising method for automatically scheduling goals at the appropriate level of

difficulty for the current policy, which could potentially be used to generate values

for the task difficulty parameters as well.
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8 Appendix

8.1 Additional Experiments

The experiments were conducted in the same setting as the simulation experiments of

Section 6. We investigate the impact of different values for the success rate interval

(Fig. 16) and the difficulty increment (Fig. 17).

8.2 Hyperparameters

Table 3 shows a list of hyperparameters that were used in the experiments.

8.3 Reward Functions

The sparse reward function consists of a penalty φ for the movement of the bottom

block during the execution of the task. It is defined as:

φ = tanh(cos−1(2〈qstart,qend〉2 − 1) + 10 ∗ ‖posstart − posend‖), (14)

where pos and q denote position and orientation (expressed as quaternion) of the

bottom block.
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Figure 16: Success Rate Interval Experiment. In this experiment, we evaluate the
influence of difference values for [α, β]. The interval of [0.4, 0.6] corresponds to our
default interval and shows the best performance, but also the other runs achieve good
scores. The plot shows averages and standard deviations of the evaluation success
rate over five runs with different random seeds.

Figure 17: Difficulty Increment Experiment. Here, we are comparing how different
values for ε influence the training speed and final performance. All three values show
similar training curves with our default value of ε = 0.002 being slightly better than
the rest. The plot shows averages and standard deviations of the evaluation success
rate over five runs with different random seeds.
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8.3 Reward Functions

Hyperparameter Value
Adam learning rate 2.5× 10−4

Adam ε 1× 10−5

Discount γ 0.99
GAE τ 0.95

Entropy coefficient 0.01
Value loss coefficient 0.5
Max grad. norm 0.5
Number of actors 8
Minibatch size 8× 512
Num. epochs 4
Clip param. 0.1
Training steps 107

Interval [α, β] [0.4, 0.6]
Increment ε 0.002

Number of demonstrations 10

Table 3: Default hyperparameters that were used in the experiments unless stated
otherwise.
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